Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

factories_test.py 5.2 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  1. import unittest
  2. import torch
  3. from super_gradients import Trainer
  4. from super_gradients.common import StrictLoad
  5. from super_gradients.common.decorators.factory_decorator import resolve_param
  6. from super_gradients.common.exceptions import UnknownTypeException
  7. from super_gradients.common.factories.activations_type_factory import ActivationsTypeFactory
  8. from super_gradients.common.factories.type_factory import TypeFactory
  9. from super_gradients.common.object_names import Models
  10. from super_gradients.training import models
  11. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  12. from super_gradients.training.losses import CrossEntropyLoss
  13. from super_gradients.training.metrics import Accuracy, Top5
  14. from torch import nn
  15. class FactoriesTest(unittest.TestCase):
  16. def test_training_with_factories(self):
  17. trainer = Trainer("test_train_with_factories")
  18. net = models.get(Models.RESNET18, num_classes=5)
  19. train_params = {
  20. "max_epochs": 2,
  21. "lr_updates": [1],
  22. "lr_decay_factor": 0.1,
  23. "lr_mode": "StepLRScheduler",
  24. "lr_warmup_epochs": 0,
  25. "initial_lr": 0.1,
  26. "loss": "CrossEntropyLoss",
  27. "optimizer": "torch.optim.ASGD", # use an optimizer by factory
  28. "criterion_params": {},
  29. "optimizer_params": {"lambd": 0.0001, "alpha": 0.75},
  30. "train_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
  31. "valid_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
  32. "metric_to_watch": "Accuracy",
  33. "greater_metric_to_watch_is_better": True,
  34. }
  35. trainer.train(model=net, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
  36. self.assertIsInstance(trainer.train_metrics.Accuracy, Accuracy)
  37. self.assertIsInstance(trainer.valid_metrics.Top5, Top5)
  38. self.assertIsInstance(trainer.optimizer, torch.optim.ASGD)
  39. def test_training_with_factories_with_typos(self):
  40. trainer = Trainer("test_train_with_factories_with_typos")
  41. net = models.get("Resnet___18", num_classes=5)
  42. train_params = {
  43. "max_epochs": 2,
  44. "lr_updates": [1],
  45. "lr_decay_factor": 0.1,
  46. "lr_mode": "StepLRScheduler",
  47. "lr_warmup_epochs": 0,
  48. "initial_lr": 0.1,
  49. "loss": "crossEnt_ropy",
  50. "optimizer": "AdAm_", # use an optimizer by factory
  51. "criterion_params": {},
  52. "train_metrics_list": ["accur_acy", "Top_5"], # use a metric by factory
  53. "valid_metrics_list": ["aCCuracy", "Top5"], # use a metric by factory
  54. "metric_to_watch": "Accurac_Y",
  55. "greater_metric_to_watch_is_better": True,
  56. }
  57. trainer.train(model=net, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
  58. self.assertIsInstance(trainer.train_metrics.Accuracy, Accuracy)
  59. self.assertIsInstance(trainer.valid_metrics.Top5, Top5)
  60. self.assertIsInstance(trainer.optimizer, torch.optim.Adam)
  61. self.assertIsInstance(trainer.criterion, CrossEntropyLoss)
  62. def test_activations_factory(self):
  63. class DummyModel(nn.Module):
  64. @resolve_param("activation_in_head", ActivationsTypeFactory())
  65. def __init__(self, activation_in_head):
  66. super().__init__()
  67. self.activation_in_head = activation_in_head()
  68. model = DummyModel(activation_in_head="leaky_relu")
  69. self.assertIsInstance(model.activation_in_head, nn.LeakyReLU)
  70. def test_activations_factory_input_is_type(self):
  71. class DummyModel(nn.Module):
  72. @resolve_param("activation_in_head", ActivationsTypeFactory())
  73. def __init__(self, activation_in_head):
  74. super().__init__()
  75. self.activation_in_head = activation_in_head()
  76. model = DummyModel(activation_in_head=nn.LeakyReLU)
  77. self.assertIsInstance(model.activation_in_head, nn.LeakyReLU)
  78. def test_enum_factory(self):
  79. @resolve_param("v", TypeFactory.from_enum_cls(StrictLoad))
  80. def get_enum_value_from_string(v):
  81. return v
  82. self.assertEqual(StrictLoad.ON, get_enum_value_from_string(StrictLoad.ON))
  83. self.assertEqual(StrictLoad.ON, get_enum_value_from_string(True))
  84. self.assertEqual(StrictLoad.ON, get_enum_value_from_string("True"))
  85. self.assertEqual(StrictLoad.OFF, get_enum_value_from_string(StrictLoad.OFF))
  86. self.assertEqual(StrictLoad.OFF, get_enum_value_from_string(False))
  87. self.assertEqual(StrictLoad.OFF, get_enum_value_from_string("False"))
  88. self.assertEqual(StrictLoad.KEY_MATCHING, get_enum_value_from_string(StrictLoad.KEY_MATCHING))
  89. self.assertEqual(StrictLoad.NO_KEY_MATCHING, get_enum_value_from_string(StrictLoad.NO_KEY_MATCHING))
  90. self.assertEqual(StrictLoad.KEY_MATCHING, get_enum_value_from_string("KEY_MATCHING"))
  91. self.assertEqual(StrictLoad.KEY_MATCHING, get_enum_value_from_string("key_matching"))
  92. with self.assertRaises(UnknownTypeException):
  93. print(get_enum_value_from_string("ABCABABABA"))
  94. if __name__ == "__main__":
  95. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...