Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

roboflow_yolo_nas_s.yaml 2.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
  1. # A recipe to fine-tune YoloNAS on Roboflow datasets.
  2. # Checkout the datasets at https://universe.roboflow.com/roboflow-100?ref=blog.roboflow.com
  3. #
  4. # `dataset_name` refers to the official name of the dataset.
  5. # You can find it in the url of the dataset: https://universe.roboflow.com/roboflow-100/digits-t2eg6 -> digits-t2eg6
  6. #
  7. # Example: python -m super_gradients.train_from_recipe --config-name=roboflow_yolo_nas_s dataset_name=digits-t2eg6
  8. defaults:
  9. - training_hyperparams: coco2017_yolo_nas_train_params
  10. - dataset_params: roboflow_detection_dataset_params
  11. - checkpoint_params: default_checkpoint_params
  12. - arch_params: yolo_nas_s_arch_params
  13. - _self_
  14. - variable_setup
  15. train_dataloader: roboflow_train_yolox
  16. val_dataloader: roboflow_val_yolox
  17. dataset_name: ??? # Placeholder for the name of the dataset you want to use (e.g. "digits-t2eg6")
  18. dataset_params:
  19. dataset_name: ${dataset_name}
  20. train_dataloader_params:
  21. batch_size: 16
  22. val_dataloader_params:
  23. batch_size: 16
  24. num_classes: ${roboflow_dataset_num_classes:${dataset_name}}
  25. architecture: yolo_nas_s
  26. arch_params:
  27. num_classes: ${num_classes}
  28. load_checkpoint: False
  29. checkpoint_params:
  30. pretrained_weights: coco
  31. result_path: # By defaults saves results in checkpoints directory
  32. resume: False
  33. training_hyperparams:
  34. resume: ${resume}
  35. zero_weight_decay_on_bias_and_bn: True
  36. lr_warmup_epochs: 3
  37. warmup_mode: linear_epoch_step
  38. initial_lr: 5e-4
  39. cosine_final_lr_ratio: 0.1
  40. optimizer_params:
  41. weight_decay: 0.0001
  42. ema: True
  43. ema_params:
  44. decay: 0.9
  45. max_epochs: 100
  46. mixed_precision: True
  47. criterion_params:
  48. num_classes: ${num_classes}
  49. phase_callbacks: []
  50. loss:
  51. ppyoloe_loss:
  52. num_classes: ${num_classes}
  53. reg_max: 16
  54. valid_metrics_list:
  55. - DetectionMetrics_050:
  56. score_thres: 0.1
  57. top_k_predictions: 300
  58. num_cls: ${num_classes}
  59. normalize_targets: True
  60. post_prediction_callback:
  61. _target_: super_gradients.training.models.detection_models.pp_yolo_e.PPYoloEPostPredictionCallback
  62. score_threshold: 0.01
  63. nms_top_k: 1000
  64. max_predictions: 300
  65. nms_threshold: 0.7
  66. metric_to_watch: 'mAP@0.50'
  67. multi_gpu: Off
  68. num_gpus: 1
  69. experiment_suffix: ""
  70. experiment_name: ${architecture}_roboflow_${dataset_name}${experiment_suffix}
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...