Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

initialize_with_dataloaders_test.py 5.2 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
  1. import unittest
  2. from super_gradients.training import models
  3. from super_gradients import Trainer, ClassificationTestDatasetInterface
  4. import torch
  5. from torch.utils.data import TensorDataset, DataLoader
  6. from super_gradients.training.metrics import Accuracy
  7. from super_gradients.training.exceptions.sg_trainer_exceptions import IllegalDataloaderInitialization
  8. class InitializeWithDataloadersTest(unittest.TestCase):
  9. def setUp(self):
  10. self.testcase_classes = [0, 1, 2, 3, 4]
  11. train_size, valid_size, test_size = 160, 20, 20
  12. channels, width, height = 3, 224, 224
  13. inp = torch.randn((train_size, channels, width, height))
  14. label = torch.randint(0, len(self.testcase_classes), size=(train_size,))
  15. self.testcase_trainloader = DataLoader(TensorDataset(inp, label))
  16. inp = torch.randn((valid_size, channels, width, height))
  17. label = torch.randint(0, len(self.testcase_classes), size=(valid_size,))
  18. self.testcase_validloader = DataLoader(TensorDataset(inp, label))
  19. inp = torch.randn((test_size, channels, width, height))
  20. label = torch.randint(0, len(self.testcase_classes), size=(test_size,))
  21. self.testcase_testloader = DataLoader(TensorDataset(inp, label))
  22. def test_interface_was_not_broken(self):
  23. trainer = Trainer("test_interface", model_checkpoints_location='local')
  24. dataset_params = {"batch_size": 10}
  25. dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
  26. trainer.connect_dataset_interface(dataset)
  27. model = models.get("efficientnet_b0", arch_params={"num_classes": 5})
  28. train_params = {"max_epochs": 1, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
  29. "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": torch.nn.CrossEntropyLoss(),
  30. "optimizer": "SGD",
  31. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  32. "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
  33. "metric_to_watch": "Accuracy",
  34. "greater_metric_to_watch_is_better": True}
  35. trainer.train(model=model, training_params=train_params)
  36. def test_initialization_rules(self):
  37. self.assertRaises(IllegalDataloaderInitialization, Trainer, "test_name", model_checkpoints_location='local',
  38. train_loader=self.testcase_trainloader)
  39. self.assertRaises(IllegalDataloaderInitialization, Trainer, "test_name", model_checkpoints_location='local',
  40. valid_loader=self.testcase_validloader)
  41. self.assertRaises(IllegalDataloaderInitialization, Trainer, "test_name", model_checkpoints_location='local',
  42. classes=self.testcase_classes)
  43. self.assertRaises(IllegalDataloaderInitialization, Trainer, "test_name", model_checkpoints_location='local',
  44. train_loader=self.testcase_trainloader, valid_loader=self.testcase_validloader)
  45. self.assertRaises(IllegalDataloaderInitialization, Trainer, "test_name", model_checkpoints_location='local',
  46. train_loader=self.testcase_trainloader, classes=self.testcase_classes)
  47. self.assertRaises(IllegalDataloaderInitialization, Trainer, "test_name", model_checkpoints_location='local',
  48. valid_loader=self.testcase_validloader, classes=self.testcase_classes)
  49. Trainer("test_name", model_checkpoints_location='local', train_loader=self.testcase_trainloader,
  50. valid_loader=self.testcase_validloader, classes=self.testcase_classes)
  51. Trainer("test_name", model_checkpoints_location='local', train_loader=self.testcase_trainloader,
  52. valid_loader=self.testcase_validloader, test_loader=self.testcase_testloader,
  53. classes=self.testcase_classes)
  54. def test_train_with_dataloaders(self):
  55. trainer = Trainer(experiment_name="test_name", model_checkpoints_location="local")
  56. trainer.build_model("resnet18")
  57. model = models.get("resnet18", arch_params={"num_classes": 5})
  58. trainer.train(model=model,
  59. training_params={"max_epochs": 2,
  60. "lr_updates": [5, 6, 12],
  61. "lr_decay_factor": 0.01,
  62. "lr_mode": "step",
  63. "initial_lr": 0.01,
  64. "loss": "cross_entropy",
  65. "optimizer": "SGD",
  66. "optimizer_params": {"weight_decay": 1e-5, "momentum": 0.9},
  67. "train_metrics_list": [Accuracy()],
  68. "valid_metrics_list": [Accuracy()],
  69. "metric_to_watch": "Accuracy",
  70. "greater_metric_to_watch_is_better": True},
  71. train_loader=self.testcase_trainloader,
  72. valid_loader=self.testcase_validloader,
  73. )
  74. self.assertTrue(0 < trainer.best_metric.item() < 1)
  75. if __name__ == '__main__':
  76. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...