Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

coco2017_yolov5.yaml 2.4 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
  1. # TODO: REPLICATE THE BELOW RESULTS BELOW AND ADD TENSORBOARDS, LOGS, TRAINING TIME ETC.
  2. # Yolo v5 Detection training on CoCo2017 Dataset:
  3. # Yolo v5s train on 320x320 mAP@0.5-0.95 (confidence 0.001, test on 320x320 images) ~28.4
  4. # Yolo v5s train in 640x640 mAP@0.5-0.95 (confidence 0.001, test on 320x320 images) ~29.1
  5. # batch size may need to change depending on model size and GPU (2080Ti, V100)
  6. # The code is optimized for running with a Mini-Batch of 64 examples... So depending on the amount of GPUs,
  7. # you should change the "batch_accumulate" param in the training_params dict to be batch_size * gpu_num * batch_accumulate = 64.
  8. # Instructions:
  9. # Set the PYTHONPATH environment variable: (Replace "YOUR_LOCAL_PATH" with the path to the downloaded repo):
  10. # export PYTHONPATH="YOUR_LOCAL_PATH"/super_gradients/
  11. # Then for 320x320 image size for training:
  12. # python -m torch.distributed.launch --nproc_per_node=4 train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolov5
  13. # And for 640x640 image size for training:
  14. # python -m torch.distributed.launch --nproc_per_node=4 train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolov5 dataset_params.train_image_size=640
  15. defaults:
  16. - training_hyperparams: coco2017_yolov5_train_params
  17. - dataset_params: coco_detection_dataset_params
  18. - arch_params: yolov5s_arch_params
  19. dataset_interface:
  20. _target_: super_gradients.training.datasets.dataset_interfaces.dataset_interface.CoCoDetectionDatasetInterface
  21. dataset_params: ${dataset_params}
  22. data_loader_num_workers: 8
  23. model_checkpoints_location: local
  24. load_checkpoint: False
  25. architecture: yolo_v5s
  26. experiment_name: ${architecture}_coco2017_320
  27. multi_gpu:
  28. _target_: super_gradients.training.sg_model.MultiGPUMode
  29. value: 'DDP'
  30. deci_model:
  31. _target_: super_gradients.SgModel
  32. experiment_name: ${experiment_name}
  33. multi_gpu: ${multi_gpu}
  34. training_hyperparams:
  35. criterion_params:
  36. anchors:
  37. _target_: super_gradients.training.utils.detection_utils.Anchors
  38. anchors_list: [[10, 13, 16, 30, 33, 23],[30, 61, 62, 45, 59, 119],[116, 90, 156, 198, 373, 326]]
  39. strides: [8, 16, 32] # output strides of all yolo outputs
  40. obj_loss_gain: 1.0 # will be scaled according to train image size
  41. box_loss_gain: 0.05 # will be scaled according to num output levels
  42. cls_loss_gain: 0.5 # will be scaled according to num classes and num output levels
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...