Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

super_gradients.training.datasets.segmentation_datasets.html 41 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
  1. <!DOCTYPE html>
  2. <html class="writer-html5" lang="en" >
  3. <head>
  4. <meta charset="utf-8" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
  5. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  6. <title>super_gradients.training.datasets.segmentation_datasets package &mdash; SuperGradients 1.0 documentation</title>
  7. <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
  8. <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
  9. <!--[if lt IE 9]>
  10. <script src="_static/js/html5shiv.min.js"></script>
  11. <![endif]-->
  12. <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
  13. <script src="_static/jquery.js"></script>
  14. <script src="_static/underscore.js"></script>
  15. <script src="_static/doctools.js"></script>
  16. <script src="_static/js/theme.js"></script>
  17. <link rel="index" title="Index" href="genindex.html" />
  18. <link rel="search" title="Search" href="search.html" />
  19. <link rel="next" title="super_gradients.training.exceptions package" href="super_gradients.training.exceptions.html" />
  20. <link rel="prev" title="super_gradients.training.datasets.detection_datasets package" href="super_gradients.training.datasets.detection_datasets.html" />
  21. </head>
  22. <body class="wy-body-for-nav">
  23. <div class="wy-grid-for-nav">
  24. <nav data-toggle="wy-nav-shift" class="wy-nav-side">
  25. <div class="wy-side-scroll">
  26. <div class="wy-side-nav-search" >
  27. <a href="index.html" class="icon icon-home"> SuperGradients
  28. </a>
  29. <div role="search">
  30. <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
  31. <input type="text" name="q" placeholder="Search docs" />
  32. <input type="hidden" name="check_keywords" value="yes" />
  33. <input type="hidden" name="area" value="default" />
  34. </form>
  35. </div>
  36. </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
  37. <p class="caption"><span class="caption-text">Contents:</span></p>
  38. <ul class="current">
  39. <li class="toctree-l1"><a class="reference internal" href="intro.html">Introduction</a></li>
  40. <li class="toctree-l1"><a class="reference internal" href="intro.html#installation">Installation</a></li>
  41. <li class="toctree-l1 current"><a class="reference internal" href="super_gradients.training.html">super_gradients.training package</a><ul class="current">
  42. <li class="toctree-l2 current"><a class="reference internal" href="super_gradients.training.html#subpackages">Subpackages</a><ul class="current">
  43. <li class="toctree-l3 current"><a class="reference internal" href="super_gradients.training.datasets.html">super_gradients.training.datasets package</a><ul class="current">
  44. <li class="toctree-l4 current"><a class="reference internal" href="super_gradients.training.datasets.html#subpackages">Subpackages</a></li>
  45. <li class="toctree-l4"><a class="reference internal" href="super_gradients.training.datasets.html#submodules">Submodules</a></li>
  46. <li class="toctree-l4"><a class="reference internal" href="super_gradients.training.datasets.html#module-super_gradients.training.datasets.all_datasets">super_gradients.training.datasets.all_datasets module</a></li>
  47. <li class="toctree-l4"><a class="reference internal" href="super_gradients.training.datasets.html#module-super_gradients.training.datasets.auto_augment">super_gradients.training.datasets.auto_augment module</a></li>
  48. <li class="toctree-l4"><a class="reference internal" href="super_gradients.training.datasets.html#module-super_gradients.training.datasets.data_augmentation">super_gradients.training.datasets.data_augmentation module</a></li>
  49. <li class="toctree-l4"><a class="reference internal" href="super_gradients.training.datasets.html#module-super_gradients.training.datasets.datasets_conf">super_gradients.training.datasets.datasets_conf module</a></li>
  50. <li class="toctree-l4"><a class="reference internal" href="super_gradients.training.datasets.html#module-super_gradients.training.datasets.datasets_utils">super_gradients.training.datasets.datasets_utils module</a></li>
  51. <li class="toctree-l4"><a class="reference internal" href="super_gradients.training.datasets.html#module-super_gradients.training.datasets.mixup">super_gradients.training.datasets.mixup module</a></li>
  52. <li class="toctree-l4"><a class="reference internal" href="super_gradients.training.datasets.html#module-super_gradients.training.datasets.sg_dataset">super_gradients.training.datasets.sg_dataset module</a></li>
  53. <li class="toctree-l4"><a class="reference internal" href="super_gradients.training.datasets.html#module-super_gradients.training.datasets">Module contents</a></li>
  54. </ul>
  55. </li>
  56. <li class="toctree-l3"><a class="reference internal" href="super_gradients.training.exceptions.html">super_gradients.training.exceptions package</a></li>
  57. <li class="toctree-l3"><a class="reference internal" href="super_gradients.training.legacy.html">super_gradients.training.legacy package</a></li>
  58. <li class="toctree-l3"><a class="reference internal" href="super_gradients.training.losses.html">super_gradients.training.losses package</a></li>
  59. <li class="toctree-l3"><a class="reference internal" href="super_gradients.training.metrics.html">super_gradients.training.metrics package</a></li>
  60. <li class="toctree-l3"><a class="reference internal" href="super_gradients.training.models.html">super_gradients.training.models package</a></li>
  61. <li class="toctree-l3"><a class="reference internal" href="super_gradients.training.sg_model.html">super_gradients.training.sg_model package</a></li>
  62. <li class="toctree-l3"><a class="reference internal" href="super_gradients.training.utils.html">super_gradients.training.utils package</a></li>
  63. </ul>
  64. </li>
  65. <li class="toctree-l2"><a class="reference internal" href="super_gradients.training.html#submodules">Submodules</a></li>
  66. <li class="toctree-l2"><a class="reference internal" href="super_gradients.training.html#module-super_gradients.training.params">super_gradients.training.params module</a></li>
  67. <li class="toctree-l2"><a class="reference internal" href="super_gradients.training.html#module-super_gradients.training.pretrained_models">super_gradients.training.pretrained_models module</a></li>
  68. <li class="toctree-l2"><a class="reference internal" href="super_gradients.training.html#module-super_gradients.training">Module contents</a></li>
  69. </ul>
  70. </li>
  71. </ul>
  72. </div>
  73. </div>
  74. </nav>
  75. <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
  76. <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
  77. <a href="index.html">SuperGradients</a>
  78. </nav>
  79. <div class="wy-nav-content">
  80. <div class="rst-content">
  81. <div role="navigation" aria-label="Page navigation">
  82. <ul class="wy-breadcrumbs">
  83. <li><a href="index.html" class="icon icon-home"></a> &raquo;</li>
  84. <li><a href="super_gradients.training.html">super_gradients.training package</a> &raquo;</li>
  85. <li><a href="super_gradients.training.datasets.html">super_gradients.training.datasets package</a> &raquo;</li>
  86. <li>super_gradients.training.datasets.segmentation_datasets package</li>
  87. <li class="wy-breadcrumbs-aside">
  88. <a href="_sources/super_gradients.training.datasets.segmentation_datasets.rst.txt" rel="nofollow"> View page source</a>
  89. </li>
  90. </ul>
  91. <hr/>
  92. </div>
  93. <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
  94. <div itemprop="articleBody">
  95. <section id="super-gradients-training-datasets-segmentation-datasets-package">
  96. <h1>super_gradients.training.datasets.segmentation_datasets package<a class="headerlink" href="#super-gradients-training-datasets-segmentation-datasets-package" title="Permalink to this headline"></a></h1>
  97. <section id="submodules">
  98. <h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
  99. </section>
  100. <section id="module-super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation">
  101. <span id="super-gradients-training-datasets-segmentation-datasets-cityscape-segmentation-module"></span><h2>super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation module<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation" title="Permalink to this headline"></a></h2>
  102. <dl class="py class">
  103. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset">
  104. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.</span></span><span class="sig-name descname"><span class="pre">CityscapesDataset</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">root_dir</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">list_file</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">labels_csv_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset" title="Permalink to this definition"></a></dt>
  105. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  106. <p>CityscapesDataset - Segmentation Data Set Class for Cityscapes Segmentation Data Set,
  107. main resolution of dataset: (2048 x 1024).
  108. Not all the original labels are used for training and evaluation, according to cityscape paper:
  109. “Classes that are too rare are excluded from our benchmark, leaving 19 classes for evaluation”.
  110. For more details about the dataset labels format see:
  111. <a class="reference external" href="https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py">https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py</a></p>
  112. <dl class="py method">
  113. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.get_train_ids_color_palette">
  114. <span class="sig-name descname"><span class="pre">get_train_ids_color_palette</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset.get_train_ids_color_palette"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.get_train_ids_color_palette" title="Permalink to this definition"></a></dt>
  115. <dd></dd></dl>
  116. <dl class="py method">
  117. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.target_loader">
  118. <span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">label_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shayaharon/.conda/envs/trainer_and_rt/lib/python3.7/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.target_loader" title="Permalink to this definition"></a></dt>
  119. <dd><dl class="simple">
  120. <dt>Override target_loader function, load the labels mask image.</dt><dd><dl class="field-list simple">
  121. <dt class="field-odd">param label_path</dt>
  122. <dd class="field-odd"><p>Path to the label image.</p>
  123. </dd>
  124. <dt class="field-even">return</dt>
  125. <dd class="field-even"><p>The mask image created from the array, with converted class labels.</p>
  126. </dd>
  127. </dl>
  128. </dd>
  129. </dl>
  130. </dd></dl>
  131. <dl class="py method">
  132. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.target_transform">
  133. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/cityscape_segmentation.html#CityscapesDataset.target_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation.CityscapesDataset.target_transform" title="Permalink to this definition"></a></dt>
  134. <dd><p>target_transform - Transforms the sample image
  135. This function overrides the original function from SegmentationDataSet and changes target pixels with value
  136. 255 to value = CITYSCAPES_IGNORE_LABEL. This was done since current IoU metric from torchmetrics does not
  137. support such a high ignore label value (crashed on OOM)</p>
  138. <blockquote>
  139. <div><dl class="field-list simple">
  140. <dt class="field-odd">param target</dt>
  141. <dd class="field-odd"><p>The target mask to transform</p>
  142. </dd>
  143. <dt class="field-even">return</dt>
  144. <dd class="field-even"><p>The transformed target mask</p>
  145. </dd>
  146. </dl>
  147. </div></blockquote>
  148. </dd></dl>
  149. </dd></dl>
  150. </section>
  151. <section id="module-super_gradients.training.datasets.segmentation_datasets.coco_segmentation">
  152. <span id="super-gradients-training-datasets-segmentation-datasets-coco-segmentation-module"></span><h2>super_gradients.training.datasets.segmentation_datasets.coco_segmentation module<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets.coco_segmentation" title="Permalink to this headline"></a></h2>
  153. <dl class="py class">
  154. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.coco_segmentation.CoCoSegmentationDataSet">
  155. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.coco_segmentation.</span></span><span class="sig-name descname"><span class="pre">CoCoSegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">dataset_classes_inclusion_tuples_list</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">list</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/coco_segmentation.html#CoCoSegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.coco_segmentation.CoCoSegmentationDataSet" title="Permalink to this definition"></a></dt>
  156. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  157. <p>CoCoSegmentationDataSet - Segmentation Data Set Class for COCO 2017 Segmentation Data Set</p>
  158. <dl class="py method">
  159. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.coco_segmentation.CoCoSegmentationDataSet.target_loader">
  160. <span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">mask_metadata_tuple</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shayaharon/.conda/envs/trainer_and_rt/lib/python3.7/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/coco_segmentation.html#CoCoSegmentationDataSet.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.coco_segmentation.CoCoSegmentationDataSet.target_loader" title="Permalink to this definition"></a></dt>
  161. <dd><dl class="field-list simple">
  162. <dt class="field-odd">Parameters</dt>
  163. <dd class="field-odd"><p><strong>mask_metadata_tuple</strong> – A tuple of (coco_image_id, original_image_height, original_image_width)</p>
  164. </dd>
  165. <dt class="field-even">Returns</dt>
  166. <dd class="field-even"><p>The mask image created from the array</p>
  167. </dd>
  168. </dl>
  169. </dd></dl>
  170. </dd></dl>
  171. <dl class="py exception">
  172. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.coco_segmentation.EmptyCoCoClassesSelectionException">
  173. <em class="property"><span class="pre">exception</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.coco_segmentation.</span></span><span class="sig-name descname"><span class="pre">EmptyCoCoClassesSelectionException</span></span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/coco_segmentation.html#EmptyCoCoClassesSelectionException"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.coco_segmentation.EmptyCoCoClassesSelectionException" title="Permalink to this definition"></a></dt>
  174. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Exception</span></code></p>
  175. </dd></dl>
  176. </section>
  177. <section id="module-super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation">
  178. <span id="super-gradients-training-datasets-segmentation-datasets-pascal-aug-segmentation-module"></span><h2>super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation module<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation" title="Permalink to this headline"></a></h2>
  179. <dl class="py class">
  180. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation.PascalAUG2012SegmentationDataSet">
  181. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation.</span></span><span class="sig-name descname"><span class="pre">PascalAUG2012SegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_aug_segmentation.html#PascalAUG2012SegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation.PascalAUG2012SegmentationDataSet" title="Permalink to this definition"></a></dt>
  182. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  183. <p>PascalAUG2012SegmentationDataSet - Segmentation Data Set Class for Pascal AUG 2012 Data Set</p>
  184. <dl class="py method">
  185. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation.PascalAUG2012SegmentationDataSet.target_loader">
  186. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shayaharon/.conda/envs/trainer_and_rt/lib/python3.7/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_aug_segmentation.html#PascalAUG2012SegmentationDataSet.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation.PascalAUG2012SegmentationDataSet.target_loader" title="Permalink to this definition"></a></dt>
  187. <dd><dl class="field-list simple">
  188. <dt class="field-odd">Parameters</dt>
  189. <dd class="field-odd"><p><strong>target_path</strong> – The path to the target data</p>
  190. </dd>
  191. <dt class="field-even">Returns</dt>
  192. <dd class="field-even"><p>The loaded target</p>
  193. </dd>
  194. </dl>
  195. </dd></dl>
  196. </dd></dl>
  197. </section>
  198. <section id="module-super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation">
  199. <span id="super-gradients-training-datasets-segmentation-datasets-pascal-voc-segmentation-module"></span><h2>super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation module<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation" title="Permalink to this headline"></a></h2>
  200. <dl class="py class">
  201. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation.PascalVOC2012SegmentationDataSet">
  202. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation.</span></span><span class="sig-name descname"><span class="pre">PascalVOC2012SegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sample_suffix</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_suffix</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_voc_segmentation.html#PascalVOC2012SegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation.PascalVOC2012SegmentationDataSet" title="Permalink to this definition"></a></dt>
  203. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  204. <p>PascalVOC2012SegmentationDataSet - Segmentation Data Set Class for Pascal VOC 2012 Data Set</p>
  205. <dl class="py method">
  206. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation.PascalVOC2012SegmentationDataSet.decode_segmentation_mask">
  207. <span class="sig-name descname"><span class="pre">decode_segmentation_mask</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">label_mask</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">numpy.ndarray</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/pascal_voc_segmentation.html#PascalVOC2012SegmentationDataSet.decode_segmentation_mask"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation.PascalVOC2012SegmentationDataSet.decode_segmentation_mask" title="Permalink to this definition"></a></dt>
  208. <dd><dl class="simple">
  209. <dt>decode_segmentation_mask - Decodes the colors for the Segmentation Mask</dt><dd><dl class="field-list simple">
  210. <dt class="field-odd">param</dt>
  211. <dd class="field-odd"><p>label_mask: an (M,N) array of integer values denoting
  212. the class label at each spatial location.</p>
  213. </dd>
  214. </dl>
  215. </dd>
  216. </dl>
  217. <dl class="field-list simple">
  218. <dt class="field-odd">Returns</dt>
  219. <dd class="field-odd"><p></p>
  220. </dd>
  221. </dl>
  222. </dd></dl>
  223. </dd></dl>
  224. </section>
  225. <section id="module-super_gradients.training.datasets.segmentation_datasets.segmentation_dataset">
  226. <span id="super-gradients-training-datasets-segmentation-datasets-segmentation-dataset-module"></span><h2>super_gradients.training.datasets.segmentation_datasets.segmentation_dataset module<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets.segmentation_dataset" title="Permalink to this headline"></a></h2>
  227. <dl class="py class">
  228. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet">
  229. <em class="property"><span class="pre">class</span> </em><span class="sig-prename descclassname"><span class="pre">super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.</span></span><span class="sig-name descname"><span class="pre">SegmentationDataSet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">root</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">list_file</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">samples_sub_directory</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">targets_sub_directory</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">str</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">img_size</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">608</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">crop_size</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">512</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">batch_size</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">int</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">16</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">augment</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dataset_hyper_params</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">dict</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cache_labels</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cache_images</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">bool</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sample_loader</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_loader</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">collate_fn</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">Callable</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">target_extension</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">'.png'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">image_mask_transforms</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">torchvision.transforms.transforms.Compose</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">image_mask_transforms_aug</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">Optional</span><span class="p"><span class="pre">[</span></span><span class="pre">torchvision.transforms.transforms.Compose</span><span class="p"><span class="pre">]</span></span></span> <span class="o"><span class="pre">=</span></span> <span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet" title="Permalink to this definition"></a></dt>
  230. <dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">Generic</span></code>[<code class="xref py py-obj docutils literal notranslate"><span class="pre">torch.utils.data.dataset.T_co</span></code>]</p>
  231. <dl class="py method">
  232. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.sample_loader">
  233. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">sample_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sample_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shayaharon/.conda/envs/trainer_and_rt/lib/python3.7/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.sample_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.sample_loader" title="Permalink to this definition"></a></dt>
  234. <dd><dl class="simple">
  235. <dt>sample_loader - Loads a dataset image from path using PIL</dt><dd><dl class="field-list simple">
  236. <dt class="field-odd">param sample_path</dt>
  237. <dd class="field-odd"><p>The path to the sample image</p>
  238. </dd>
  239. <dt class="field-even">return</dt>
  240. <dd class="field-even"><p>The loaded Image</p>
  241. </dd>
  242. </dl>
  243. </dd>
  244. </dl>
  245. </dd></dl>
  246. <dl class="py method">
  247. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.sample_transform">
  248. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">sample_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">image</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.sample_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.sample_transform" title="Permalink to this definition"></a></dt>
  249. <dd><p>sample_transform - Transforms the sample image</p>
  250. <blockquote>
  251. <div><dl class="field-list simple">
  252. <dt class="field-odd">param image</dt>
  253. <dd class="field-odd"><p>The input image to transform</p>
  254. </dd>
  255. <dt class="field-even">return</dt>
  256. <dd class="field-even"><p>The transformed image</p>
  257. </dd>
  258. </dl>
  259. </div></blockquote>
  260. </dd></dl>
  261. <dl class="py method">
  262. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.target_loader">
  263. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_loader</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target_path</span></span><span class="p"><span class="pre">:</span></span> <span class="n"><span class="pre">str</span></span></em><span class="sig-paren">)</span> &#x2192; <span class="pre">&lt;module</span> <span class="pre">‘PIL.Image’</span> <span class="pre">from</span> <span class="pre">‘/Users/shayaharon/.conda/envs/trainer_and_rt/lib/python3.7/site-packages/PIL/Image.py’&gt;</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.target_loader"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.target_loader" title="Permalink to this definition"></a></dt>
  264. <dd><dl class="field-list simple">
  265. <dt class="field-odd">Parameters</dt>
  266. <dd class="field-odd"><p><strong>target_path</strong> – The path to the sample image</p>
  267. </dd>
  268. <dt class="field-even">Returns</dt>
  269. <dd class="field-even"><p>The loaded Image</p>
  270. </dd>
  271. </dl>
  272. </dd></dl>
  273. <dl class="py method">
  274. <dt class="sig sig-object py" id="super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.target_transform">
  275. <em class="property"><span class="pre">static</span> </em><span class="sig-name descname"><span class="pre">target_transform</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">target</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/super_gradients/training/datasets/segmentation_datasets/segmentation_dataset.html#SegmentationDataSet.target_transform"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#super_gradients.training.datasets.segmentation_datasets.segmentation_dataset.SegmentationDataSet.target_transform" title="Permalink to this definition"></a></dt>
  276. <dd><p>target_transform - Transforms the sample image</p>
  277. <blockquote>
  278. <div><dl class="field-list simple">
  279. <dt class="field-odd">param target</dt>
  280. <dd class="field-odd"><p>The target mask to transform</p>
  281. </dd>
  282. <dt class="field-even">return</dt>
  283. <dd class="field-even"><p>The transformed target mask</p>
  284. </dd>
  285. </dl>
  286. </div></blockquote>
  287. </dd></dl>
  288. </dd></dl>
  289. </section>
  290. <section id="module-super_gradients.training.datasets.segmentation_datasets">
  291. <span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-super_gradients.training.datasets.segmentation_datasets" title="Permalink to this headline"></a></h2>
  292. </section>
  293. </section>
  294. </div>
  295. </div>
  296. <footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
  297. <a href="super_gradients.training.datasets.detection_datasets.html" class="btn btn-neutral float-left" title="super_gradients.training.datasets.detection_datasets package" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
  298. <a href="super_gradients.training.exceptions.html" class="btn btn-neutral float-right" title="super_gradients.training.exceptions package" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
  299. </div>
  300. <hr/>
  301. <div role="contentinfo">
  302. <p>&#169; Copyright 2021, SuperGradients team.</p>
  303. </div>
  304. Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
  305. <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
  306. provided by <a href="https://readthedocs.org">Read the Docs</a>.
  307. </footer>
  308. </div>
  309. </div>
  310. </section>
  311. </div>
  312. <script>
  313. jQuery(function () {
  314. SphinxRtdTheme.Navigation.enable(true);
  315. });
  316. </script>
  317. </body>
  318. </html>
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...