Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

welcome.md.txt 15 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
  1. <div align="center">
  2. <img src="assets/SG_img/SG - Horizontal.png" width="600"/>
  3. <br/><br/>
  4. **Easily train or fine-tune SOTA computer vision models with one open source training library**
  5. [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Easily%20train%20or%20fine-tune%20SOTA%20computer%20vision%20models%20from%20one%20training%20repository&url=https://github.com/Deci-AI/super-gradients&via=deci_ai&hashtags=AI,deeplearning,computervision,training,opensource)
  6. ______________________________________________________________________
  7. <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-blue" />
  8. <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/pytorch-1.9%20%7C%201.10-blue" />
  9. <a href="https://pypi.org/project/super-gradients/"><img src="https://img.shields.io/pypi/v/super-gradients" />
  10. <a href="https://github.com/Deci-AI/super-gradients#computer-vision-models-pretrained-checkpoints" ><img src="https://img.shields.io/badge/pre--trained%20models-25-brightgreen" />
  11. <a href="https://github.com/Deci-AI/super-gradients/releases"><img src="https://img.shields.io/github/v/release/Deci-AI/super-gradients" />
  12. <a href="https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q"><img src="https://img.shields.io/badge/slack-community-blueviolet" />
  13. <a href="https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" />
  14. <a href="https://deci-ai.github.io/super-gradients/welcome.html"><img src="https://img.shields.io/badge/docs-sphinx-brightgreen" />
  15. </div>
  16. # SuperGradients
  17. ## Introduction
  18. Welcome to SuperGradients, a free, open-source training library for PyTorch-based deep learning models.
  19. SuperGradients allows you to train or fine-tune SOTA pre-trained models for all the most commonly applied computer vision tasks with just one training library. We currently support object detection, image classification and semantic segmentation for videos and images.
  20. Docs and full user guide[](#)
  21. ### Why use SuperGradients?
  22. **Built-in SOTA Models**
  23. Easily load and fine-tune production-ready, [pre-trained SOTA models](https://github.com/Deci-AI/super-gradients#pretrained-classification-pytorch-checkpoints) that incorporate best practices and validated hyper-parameters for achieving best-in-class accuracy.
  24. **Easily Reproduce our Results**
  25. Why do all the grind work, if we already did it for you? leverage tested and proven [recipes](https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/recipes) & [code examples](https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples) for a wide range of computer vision models generated by our team of deep learning experts. Easily configure your own or use plug & play hyperparameters for training, dataset, and architecture.
  26. **Production Readiness and Ease of Integration**
  27. All SuperGradients models’ are production ready in the sense that they are compatible with deployment tools such as TensorRT (Nvidia) and OpenVino (Intel) and can be easily taken into production. With a few lines of code you can easily integrate the models into your codebase.
  28. <div align="center">
  29. <img src="./assets/SG_img/detection-demo.png" width="600px">
  30. </div>
  31. ### Documentation
  32. Check SuperGradients [Docs](https://deci-ai.github.io/super-gradients/welcome.html) for full documentation, user guide, and examples.
  33. ## What's New
  34. * 【07/02/2022】 We added RegSeg recipes and pre-trained models to our [Semantic Segmentation models](#pretrained-semantic-segmentation-pytorch-checkpoints).
  35. * 【01/02/2022】 We added issue templates for feature requests and bug reporting.
  36. * 【20/01/2022】 STDC family - new recipes added with even higher mIoU💪
  37. * 【17/01/2022】 We have released transfer learning example [notebook](https://colab.research.google.com/drive/1ZR_cvy8tQB_fTZwB2SQxg3RfIVKxNxRO?usp=sharing) for object detection (YOLOv5).
  38. Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
  39. ## Comming soon
  40. - [ ] YOLOX models (recipes, pre-trained checkpoints).
  41. - [ ] SSD MobileNet models (recipes, pre-trained checkpoints) for edge devices deployment.
  42. - [ ] Transfer learning example notebook for semantic segmentation (STDC).
  43. - [ ] Dali implementation.
  44. - [ ] Integration with professional tools.
  45. __________________________________________________________________________________________________________
  46. ### Table of Content
  47. <details>
  48. <summary>See Table </summary>
  49. <!-- toc -->
  50. - [Getting Started](#getting-started)
  51. - [Quick Start Notebook](#quick-start-notebook)
  52. - [Walkthrough Notebook](#supergradients-walkthrough-notebook)
  53. - [Transfer Learning with SG Notebook](#transfer-learning-with-sg-notebook)
  54. - [Installation Methods](#installation-methods)
  55. - [Prerequisites](#prerequisites)
  56. - [Quick Installation](#quick-installation)
  57. - [Computer Vision Models' Pretrained Checkpoints](#computer-vision-models-pretrained-checkpoints)
  58. - [Pretrained Classification PyTorch Checkpoints](#pretrained-classification-pytorch-checkpoints)
  59. - [Pretrained Object Detection PyTorch Checkpoints](#pretrained-object-detection-pytorch-checkpoints)
  60. - [Pretrained Semantic Segmentation PyTorch Checkpoints](#pretrained-semantic-segmentation-pytorch-checkpoints)
  61. - [Contributing](#contributing)
  62. - [Citation](#citation)
  63. - [Community](#community)
  64. - [License](#license)
  65. - [Deci Lab](#deci-lab)
  66. <!-- tocstop -->
  67. </details>
  68. ## Getting Started
  69. ### Quick Start Notebook
  70. Get started with our quick start notebook on Google Colab for a quick and easy start using free GPU hardware
  71. <table class="tfo-notebook-buttons" align="left">
  72. <td>
  73. <a target="_blank" href="https://colab.research.google.com/drive/12cURMPVQrvhgYle-wGmE2z8b_p90BdL0?usp=sharing"><img src="./assets/SG_img/colab_logo.png" />SuperGradients Quick Start in Google Colab</a>
  74. </td>
  75. <td>
  76. <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_.ipynb"><img src="./assets/SG_img/download_logo.png" />Download notebook</a>
  77. </td>
  78. <td>
  79. <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
  80. </td>
  81. </table>
  82. </br></br>
  83. ### SuperGradients Walkthrough Notebook
  84. Learn more about SuperGradients training components with our walkthrough notebook on Google Colab for an easy to use tutorial using free GPU hardware
  85. <table class="tfo-notebook-buttons" align="left">
  86. <td>
  87. <a target="_blank" href="https://colab.research.google.com/drive/1smwh4EAgE8PwnCtwsdU8a9D9Ezfh6FQK?usp=sharing"><img src="./assets/SG_img/colab_logo.png" />SuperGradients Walkthrough in Google Colab</a>
  88. </td>
  89. <td>
  90. <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_Walkthrough%20.ipynb"><img src="./assets/SG_img/download_logo.png" />Download notebook</a>
  91. </td>
  92. <td>
  93. <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
  94. </td>
  95. </table>
  96. </br></br>
  97. ### Transfer Learning with SG Notebook
  98. Learn more about SuperGradients transfer learning or fine tuning abilities with our COCO pre-trained YoloV5nano fine tuning into a sub-dataset of PASCAL VOC example notebook on Google Colab for an easy to use tutorial using free GPU hardware
  99. <table class="tfo-notebook-buttons" align="left">
  100. <td>
  101. <a target="_blank" href="https://colab.research.google.com/drive/1ZR_cvy8tQB_fTZwB2SQxg3RfIVKxNxRO?usp=sharing"><img src="./assets/SG_img/colab_logo.png" />SuperGradients Transfer Learning in Google Colab</a>
  102. </td>
  103. <td>
  104. <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/TransferLearningDetection.ipynb"><img src="./assets/SG_img/download_logo.png" />Download notebook</a>
  105. </td>
  106. <td>
  107. <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
  108. </td>
  109. </table>
  110. </br></br>
  111. ## Installation Methods
  112. ### Prerequisites
  113. <details>
  114. <summary>General requirements</summary>
  115. - Python 3.7, 3.8 or 3.9 installed.
  116. - torch>=1.9.0
  117. - https://pytorch.org/get-started/locally/
  118. - The python packages that are specified in requirements.txt;
  119. </details>
  120. <details>
  121. <summary>To train on nvidia GPUs</summary>
  122. - [Nvidia CUDA Toolkit >= 11.2](https://developer.nvidia.com/cuda-11.2.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu)
  123. - CuDNN >= 8.1.x
  124. - Nvidia Driver with CUDA >= 11.2 support (≥460.x)
  125. </details>
  126. ### Quick Installation
  127. <details>
  128. <summary>Install stable version using PyPi</summary>
  129. See in [PyPi](https://pypi.org/project/super-gradients/)
  130. ```bash
  131. pip install super-gradients
  132. ```
  133. That's it !
  134. </details>
  135. <details>
  136. <summary>Install using GitHub</summary>
  137. ```bash
  138. pip install git+https://github.com/Deci-AI/super-gradients.git@stable
  139. ```
  140. </details>
  141. ## Computer Vision Models' Pretrained Checkpoints
  142. ### Pretrained Classification PyTorch Checkpoints
  143. | Model | Dataset | Resolution | Top-1 | Top-5 | Latency b1<sub>T4</sub> | Throughput b1<sub>T4</sub> |
  144. |-------------------- |------ | ---------- |----------- |------ | -------- | :------: |
  145. | EfficientNet B0 | ImageNet |224x224 | 77.62 | 93.49 |**1.16ms** |**862fps** |
  146. | RegNetY200 | ImageNet |224x224 | 70.88 | 89.35 |**1.07ms**|**928.3fps** |
  147. | RegNetY400 | ImageNet |224x224 | 74.74 | 91.46 |**1.22ms** |**816.5fps** |
  148. | RegNetY600 | ImageNet |224x224 | 76.18 | 92.34 |**1.19ms** |**838.5fps** |
  149. | RegNetY800 | ImageNet |224x224 | 77.07 | 93.26 |**1.18ms** |**841.4fps** |
  150. | ResNet18 | ImageNet |224x224 | 70.6 | 89.64 |**0.599ms** |**1669fps** |
  151. | ResNet34 | ImageNet |224x224 | 74.13 | 91.7 |**0.89ms** |**1123fps** |
  152. | ResNet50 | ImageNet |224x224 | 79.47 | 93.0 |**0.94ms** |**1063fps** |
  153. | MobileNetV3_large-150 epochs | ImageNet |224x224 | 73.79 | 91.54 |**0.87ms** |**1149fps** |
  154. | MobileNetV3_large-300 epochs | ImageNet |224x224 | 74.52 | 91.92 |**0.87ms** |**1149fps** |
  155. | MobileNetV3_small | ImageNet |224x224 |67.45 | 87.47 |**0.75ms** |**1333fps** |
  156. | MobileNetV2_w1 | ImageNet |224x224 | 73.08 | 91.1 |**0.58ms** |**1724fps** |
  157. > **NOTE:** Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1
  158. ### Pretrained Object Detection PyTorch Checkpoints
  159. | Model | Dataset | Resolution | mAP<sup>val<br>0.5:0.95 | Latency b1<sub>T4</sub> | Throughput b64<sub>T4</sub> |
  160. |--------------------- |------ | ---------- |------ | -------- | :------: |
  161. | YOLOv5 nano | COCO |640x640 |27.7 |**6.55ms** |**177.62fps** |
  162. | YOLOv5 small | COCO |640x640 |37.3 |**7.13ms** |**159.44fps** |
  163. | YOLOv5 medium | COCO |640x640 |45.2 |**8.95ms** |**121.78fps** |
  164. | YOLOv5 large | COCO |640x640 |48.0 |**11.49ms** |**95.99fps** |
  165. > **NOTE:** Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency) and batch size 64 (throughput)
  166. ### Pretrained Semantic Segmentation PyTorch Checkpoints
  167. | Model | Dataset | Resolution | mIoU | Latency b1<sub>T4</sub> | Throughput b1<sub>T4</sub> | Latency b1<sub>T4</sub> including IO |
  168. |--------------------- |------ | ---------- | ------ | -------- | -------- | :------: |
  169. | DDRNet23 | Cityscapes |1024x2048 |78.65 |**7.62ms** |**131.3fps** |**25.94ms**|
  170. | DDRNet23 slim | Cityscapes |1024x2048 |76.6 |**3.56ms** |**280.5fps** |**22.80ms**|
  171. | STDC1-Seg50 | Cityscapes | 512x1024 |74.36 |**2.83ms** |**353.3fps** |**12.57ms**|
  172. | STDC1-Seg75 | Cityscapes | 768x1536 |76.87 |**5.71ms** |**175.1fps** |**26.70ms**|
  173. | STDC2-Seg50 | Cityscapes | 512x1024 |75.27 |**3.74ms** |**267.2fps** |**13.89ms**
  174. | STDC2-Seg75 | Cityscapes | 768x1536 |78.93 |**7.35ms** |**135.9fps** |**28.18ms**|
  175. | RegSeg (exp48) | Cityscapes | 1024x2048 |78.15 |**13.09ms** |**76.4fps** |**41.88ms**|
  176. | Larger RegSeg (exp53) | Cityscapes | 1024x2048 |79.2|**24.82ms** |**40.3fps** |**51.87ms**|
  177. | ShelfNet_LW_34 | COCO Segmentation (21 classes from PASCAL including background) |512x512 |65.1 |**-** |**-** |**-** |
  178. > **NOTE:** Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency), and not including IO
  179. ## Contributing
  180. To learn about making a contribution to SuperGradients, please see our [Contribution page](CONTRIBUTING.md).
  181. Our awesome contributors:
  182. <a href="https://github.com/Deci-AI/super-gradients/graphs/contributors">
  183. <img src="https://contrib.rocks/image?repo=Deci-AI/super-gradients" />
  184. </a>
  185. <br/>Made with [contrib.rocks](https://contrib.rocks).
  186. ## Citation
  187. If you are using SuperGradients library or benchmarks in your research, please cite SuperGradients deep learning training library.
  188. ## Community
  189. If you want to be a part of SuperGradients growing community, hear about all the exciting news and updates, need help, request for advanced features,
  190. or want to file a bug or issue report, we would love to welcome you aboard!
  191. * Slack is the place to be and ask questions about SuperGradients and get support. [Click here to join our Slack](
  192. https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q)
  193. * To report a bug, [file an issue](https://github.com/Deci-AI/super-gradients/issues) on GitHub.
  194. * You can also join the [community mailing list](https://deci.ai/resources/blog/)
  195. to ask questions about the project and receive announcements.
  196. * For a short meeting with SuperGradients PM, use this [link](https://calendly.com/ofer-baratz-deci/15min) and choose your preferred time.
  197. ## License
  198. This project is released under the [Apache 2.0 license](LICENSE).
  199. __________________________________________________________________________________________________________
  200. ## Deci Lab
  201. Deci Lab supports all common frameworks and Hardware, from Intel CPUs to Nvidia's GPUs and Jetsons
  202. You can enjoy immediate improvement in throughput, latency, and memory with the Deci Lab. It optimizes deep learning models using best-of-breed technologies, such as quantization and graph compilers.
  203. Get a complete benchmark of your models’ performance on different hardware and batch sizes in a single interface. Invite co-workers to collaborate on models and communicate your progress.
  204. Sign up for Deci Lab for free [here](https://console.deci.ai/)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...