Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

coco2017_yolov5.yaml 2.1 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
  1. # Yolo v5 Detection training on CoCo2017 Dataset:
  2. # Yolo v5s trained in 640x640 mAP@0.5-0.95 (COCO API, confidence 0.001, IoU threshold 0.6, test on 640x640 images) ~37.3
  3. # Checkpoint path: s3://deci-model-repository-research/reproduce-yolo/yolos_new_640/ckpt_best.pth
  4. # Hardware: 1 3090Ti GPU
  5. #
  6. # Instructions:
  7. # Set the PYTHONPATH environment variable: (Replace "YOUR_LOCAL_PATH" with the path to the downloaded repo):
  8. # export PYTHONPATH="YOUR_LOCAL_PATH"/super_gradients/
  9. # python3 train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolov5.yaml \
  10. # dataset_params.train_image_size=640 dataset_params.val_image_size=640 \
  11. # dataset_params.batch_size=64 dataset_params.val_batch_size=64 \
  12. # architecture=yolo_v5s experiment_name=yolo_v5s_coco2017_640 \
  13. # training_hyperparams.mixed_precision=true dataset_params.val_sample_loading_method=rectangular multi_gpu=Off
  14. defaults:
  15. - training_hyperparams: coco2017_yolov5_train_params
  16. - dataset_params: coco_detection_dataset_params
  17. - arch_params: yolov5s_arch_params
  18. dataset_interface:
  19. _target_: super_gradients.training.datasets.dataset_interfaces.dataset_interface.CoCoDetectionDatasetInterface
  20. dataset_params: ${dataset_params}
  21. data_loader_num_workers: 8
  22. model_checkpoints_location: local
  23. load_checkpoint: False
  24. architecture: yolo_v5s
  25. experiment_name: ${architecture}_coco2017_320
  26. multi_gpu:
  27. _target_: super_gradients.training.sg_model.MultiGPUMode
  28. value: 'DDP'
  29. sg_model:
  30. _target_: super_gradients.SgModel
  31. experiment_name: ${experiment_name}
  32. multi_gpu: ${multi_gpu}
  33. training_hyperparams:
  34. criterion_params:
  35. anchors:
  36. _target_: super_gradients.training.utils.detection_utils.Anchors
  37. anchors_list: [[10, 13, 16, 30, 33, 23],[30, 61, 62, 45, 59, 119],[116, 90, 156, 198, 373, 326]]
  38. strides: [8, 16, 32] # output strides of all yolo outputs
  39. obj_loss_gain: 1.0 # will be scaled according to train image size
  40. box_loss_gain: 0.05 # will be scaled according to num output levels
  41. cls_loss_gain: 0.5 # will be scaled according to num classes and num output levels
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...