1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>super_gradients.training.kd_model.kd_model — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="../../../../_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="../../../../_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="../../../../_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
- <script src="../../../../_static/jquery.js"></script>
- <script src="../../../../_static/underscore.js"></script>
- <script src="../../../../_static/doctools.js"></script>
- <script src="../../../../_static/js/theme.js"></script>
- <link rel="index" title="Index" href="../../../../genindex.html" />
- <link rel="search" title="Search" href="../../../../search.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="../../../../index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="../../../../search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Welcome To SuperGradients</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html">Fill our 4-question quick survey! We will raffle free SuperGradients swag between those who will participate -> Fill Survey</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../welcome.html#supergradients">SuperGradients</a></li>
- </ul>
- <p class="caption"><span class="caption-text">Technical Documentation</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.common.html">Common package</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../super_gradients.training.html">Training package</a></li>
- </ul>
- <p class="caption"><span class="caption-text">User Guide</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html">What is SuperGradients?</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#introducing-the-supergradients-library">Introducing the SuperGradients library</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#integrating-your-training-code-complete-walkthrough">Integrating Your Training Code - Complete Walkthrough</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#training-parameters">Training Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#logs-and-checkpoints">Logs and Checkpoints</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#dataset-parameters">Dataset Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#network-architectures">Network Architectures</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#pretrained-models">Pretrained Models</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#how-to-reproduce-our-training-recipes">How To Reproduce Our Training Recipes</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#professional-tools-integration">Professional Tools Integration</a></li>
- <li class="toctree-l1"><a class="reference internal" href="../../../../user_guide.html#supergradients-faq">SuperGradients FAQ</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="../../../../index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="../../../../index.html" class="icon icon-home"></a> »</li>
- <li><a href="../../../index.html">Module code</a> »</li>
- <li>super_gradients.training.kd_model.kd_model</li>
- <li class="wy-breadcrumbs-aside">
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <h1>Source code for super_gradients.training.kd_model.kd_model</h1><div class="highlight"><pre>
- <span></span><span class="kn">import</span> <span class="nn">torch.nn</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.models.all_architectures</span> <span class="kn">import</span> <span class="n">KD_ARCHITECTURES</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.models.kd_modules.kd_module</span> <span class="kn">import</span> <span class="n">KDModule</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.sg_model</span> <span class="kn">import</span> <span class="n">SgModel</span>
- <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Union</span>
- <span class="kn">from</span> <span class="nn">super_gradients.common.abstractions.abstract_logger</span> <span class="kn">import</span> <span class="n">get_logger</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training</span> <span class="kn">import</span> <span class="n">utils</span> <span class="k">as</span> <span class="n">core_utils</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.pretrained_models</span> <span class="kn">import</span> <span class="n">PRETRAINED_NUM_CLASSES</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils</span> <span class="kn">import</span> <span class="n">get_param</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.checkpoint_utils</span> <span class="kn">import</span> <span class="n">read_ckpt_state_dict</span><span class="p">,</span> \
- <span class="n">load_checkpoint_to_model</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.exceptions.kd_model_exceptions</span> <span class="kn">import</span> <span class="n">ArchitectureKwargsException</span><span class="p">,</span> \
- <span class="n">UnsupportedKDArchitectureException</span><span class="p">,</span> <span class="n">InconsistentParamsException</span><span class="p">,</span> <span class="n">UnsupportedKDModelArgException</span><span class="p">,</span> \
- <span class="n">TeacherKnowledgeException</span><span class="p">,</span> <span class="n">UndefinedNumClassesException</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.callbacks</span> <span class="kn">import</span> <span class="n">KDModelMetricsUpdateCallback</span>
- <span class="kn">from</span> <span class="nn">super_gradients.training.utils.ema</span> <span class="kn">import</span> <span class="n">KDModelEMA</span>
- <span class="n">logger</span> <span class="o">=</span> <span class="n">get_logger</span><span class="p">(</span><span class="vm">__name__</span><span class="p">)</span>
- <div class="viewcode-block" id="KDModel"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.KDModel">[docs]</a><span class="k">class</span> <span class="nc">KDModel</span><span class="p">(</span><span class="n">SgModel</span><span class="p">):</span>
- <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">KDModel</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">student_architecture</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">teacher_architecture</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">student_arch_params</span> <span class="o">=</span> <span class="kc">None</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">teacher_arch_params</span> <span class="o">=</span> <span class="kc">None</span>
- <div class="viewcode-block" id="KDModel.build_model"><a class="viewcode-back" href="../../../../super_gradients.training.html#super_gradients.training.KDModel.build_model">[docs]</a> <span class="k">def</span> <span class="nf">build_model</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span>
- <span class="c1"># noqa: C901 - too complex</span>
- <span class="n">architecture</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">KDModule</span><span class="p">]</span> <span class="o">=</span> <span class="s1">'kd_module'</span><span class="p">,</span>
- <span class="n">arch_params</span><span class="o">=</span><span class="p">{},</span> <span class="n">checkpoint_params</span><span class="o">=</span><span class="p">{},</span>
- <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> :param architecture: (Union[str, KDModule]) Defines the network's architecture from models/KD_ARCHITECTURES</span>
- <span class="sd"> (default='kd_module')</span>
- <span class="sd"> :param arch_params: (dict) Architecture H.P. e.g.: block, num_blocks, num_classes, etc to be passed to kd</span>
- <span class="sd"> architecture class (discarded when architecture is KDModule instance)</span>
- <span class="sd"> :param checkpoint_params: (dict) A dictionary like object with the following keys/values:</span>
- <span class="sd"> student_pretrained_weights: String describing the dataset of the pretrained weights (for example</span>
- <span class="sd"> "imagenent") for the student network.</span>
- <span class="sd"> teacher_pretrained_weights: String describing the dataset of the pretrained weights (for example</span>
- <span class="sd"> "imagenent") for the teacher network.</span>
- <span class="sd"> teacher_checkpoint_path: Local path to the teacher's checkpoint. Note that when passing pretrained_weights</span>
- <span class="sd"> through teacher_arch_params these weights will be overridden by the</span>
- <span class="sd"> pretrained checkpoint. (default=None)</span>
- <span class="sd"> load_kd_model_checkpoint: Whether to load an entire KDModule checkpoint (used to continue KD training)</span>
- <span class="sd"> (default=False)</span>
- <span class="sd"> kd_model_source_ckpt_folder_name: Folder name to load an entire KDModule checkpoint from</span>
- <span class="sd"> (self.experiment_name if none is given) to resume KD training (default=None)</span>
- <span class="sd"> kd_model_external_checkpoint_path: The path to the external checkpoint to be loaded. Can be absolute or relative</span>
- <span class="sd"> (ie: path/to/checkpoint.pth). If provided, will automatically attempt to</span>
- <span class="sd"> load the checkpoint even if the load_checkpoint flag is not provided.</span>
- <span class="sd"> (deafult=None)</span>
- <span class="sd"> :keyword student_architecture: (Union[str, SgModule]) Defines the student's architecture from</span>
- <span class="sd"> models/ALL_ARCHITECTURES (when str), or directly defined the student network (when SgModule).</span>
- <span class="sd"> :keyword teacher_architecture: (Union[str, SgModule]) Defines the teacher's architecture from</span>
- <span class="sd"> models/ALL_ARCHITECTURES (when str), or directly defined the teacher network (when SgModule).</span>
- <span class="sd"> :keyword student_arch_params: (dict) Architecture H.P. e.g.: block, num_blocks, num_classes, etc for student</span>
- <span class="sd"> net. (deafult={})</span>
- <span class="sd"> :keyword teacher_arch_params: (dict) Architecture H.P. e.g.: block, num_blocks, num_classes, etc for teacher</span>
- <span class="sd"> net. (deafult={})</span>
- <span class="sd"> :keyword run_teacher_on_eval: (bool)- whether to run self.teacher at eval mode regardless of self.train(mode)</span>
- <span class="sd"> """</span>
- <span class="n">kwargs</span><span class="o">.</span><span class="n">setdefault</span><span class="p">(</span><span class="s2">"student_architecture"</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
- <span class="n">kwargs</span><span class="o">.</span><span class="n">setdefault</span><span class="p">(</span><span class="s2">"teacher_architecture"</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
- <span class="n">kwargs</span><span class="o">.</span><span class="n">setdefault</span><span class="p">(</span><span class="s2">"student_arch_params"</span><span class="p">,</span> <span class="p">{})</span>
- <span class="n">kwargs</span><span class="o">.</span><span class="n">setdefault</span><span class="p">(</span><span class="s2">"teacher_arch_params"</span><span class="p">,</span> <span class="p">{})</span>
- <span class="n">kwargs</span><span class="o">.</span><span class="n">setdefault</span><span class="p">(</span><span class="s2">"run_teacher_on_eval"</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_validate_args</span><span class="p">(</span><span class="n">arch_params</span><span class="p">,</span> <span class="n">architecture</span><span class="p">,</span> <span class="n">checkpoint_params</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">student_architecture</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"student_architecture"</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">teacher_architecture</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"teacher_architecture"</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">student_arch_params</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"student_arch_params"</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">teacher_arch_params</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"teacher_arch_params"</span><span class="p">)</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">KDModel</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">build_model</span><span class="p">(</span><span class="n">architecture</span><span class="o">=</span><span class="n">architecture</span><span class="p">,</span> <span class="n">arch_params</span><span class="o">=</span><span class="n">arch_params</span><span class="p">,</span>
- <span class="n">checkpoint_params</span><span class="o">=</span><span class="n">checkpoint_params</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div>
- <span class="k">def</span> <span class="nf">_validate_args</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">arch_params</span><span class="p">,</span> <span class="n">architecture</span><span class="p">,</span> <span class="n">checkpoint_params</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
- <span class="n">student_architecture</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">kwargs</span><span class="p">,</span> <span class="s2">"student_architecture"</span><span class="p">)</span>
- <span class="n">teacher_architecture</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">kwargs</span><span class="p">,</span> <span class="s2">"teacher_architecture"</span><span class="p">)</span>
- <span class="n">student_arch_params</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">kwargs</span><span class="p">,</span> <span class="s2">"student_arch_params"</span><span class="p">)</span>
- <span class="n">teacher_arch_params</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">kwargs</span><span class="p">,</span> <span class="s2">"teacher_arch_params"</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">get_param</span><span class="p">(</span><span class="n">checkpoint_params</span><span class="p">,</span> <span class="s1">'pretrained_weights'</span><span class="p">)</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="k">raise</span> <span class="n">UnsupportedKDModelArgException</span><span class="p">(</span><span class="s2">"pretrained_weights"</span><span class="p">,</span> <span class="s2">"checkpoint_params"</span><span class="p">)</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">architecture</span><span class="p">,</span> <span class="n">KDModule</span><span class="p">):</span>
- <span class="k">if</span> <span class="n">student_architecture</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">teacher_architecture</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="k">raise</span> <span class="n">ArchitectureKwargsException</span><span class="p">()</span>
- <span class="k">if</span> <span class="n">architecture</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">KD_ARCHITECTURES</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
- <span class="k">raise</span> <span class="n">UnsupportedKDArchitectureException</span><span class="p">(</span><span class="n">architecture</span><span class="p">)</span>
- <span class="c1"># DERIVE NUMBER OF CLASSES FROM DATASET INTERFACE IF NOT SPECIFIED OR ARCH PARAMS FOR TEACHER AND STUDENT</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_validate_num_classes</span><span class="p">(</span><span class="n">student_arch_params</span><span class="p">,</span> <span class="n">teacher_arch_params</span><span class="p">)</span>
- <span class="n">arch_params</span><span class="p">[</span><span class="s1">'num_classes'</span><span class="p">]</span> <span class="o">=</span> <span class="n">student_arch_params</span><span class="p">[</span><span class="s1">'num_classes'</span><span class="p">]</span>
- <span class="c1"># MAKE SURE TEACHER'S PRETRAINED NUM CLASSES EQUALS TO THE ONES BELONGING TO STUDENT AS WE CAN'T REPLACE</span>
- <span class="c1"># THE TEACHER'S HEAD</span>
- <span class="n">teacher_pretrained_weights</span> <span class="o">=</span> <span class="n">core_utils</span><span class="o">.</span><span class="n">get_param</span><span class="p">(</span><span class="n">checkpoint_params</span><span class="p">,</span> <span class="s1">'teacher_pretrained_weights'</span><span class="p">,</span>
- <span class="n">default_val</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">teacher_pretrained_weights</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="n">teacher_pretrained_num_classes</span> <span class="o">=</span> <span class="n">PRETRAINED_NUM_CLASSES</span><span class="p">[</span><span class="n">teacher_pretrained_weights</span><span class="p">]</span>
- <span class="k">if</span> <span class="n">teacher_pretrained_num_classes</span> <span class="o">!=</span> <span class="n">teacher_arch_params</span><span class="p">[</span><span class="s1">'num_classes'</span><span class="p">]:</span>
- <span class="k">raise</span> <span class="n">InconsistentParamsException</span><span class="p">(</span><span class="s2">"Pretrained dataset number of classes"</span><span class="p">,</span> <span class="s2">"teacher's arch params"</span><span class="p">,</span>
- <span class="s2">"number of classes"</span><span class="p">,</span> <span class="s2">"student's number of classes"</span><span class="p">)</span>
- <span class="n">teacher_checkpoint_path</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">checkpoint_params</span><span class="p">,</span> <span class="s2">"teacher_checkpoint_path"</span><span class="p">)</span>
- <span class="n">load_kd_model_checkpoint</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">checkpoint_params</span><span class="p">,</span> <span class="s2">"load_checkpoint"</span><span class="p">)</span>
- <span class="c1"># CHECK THAT TEACHER NETWORK HOLDS KNOWLEDGE FOR THE STUDENT TO LEARN FROM OR THAT WE ARE LOADING AN ENTIRE KD</span>
- <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span><span class="n">teacher_pretrained_weights</span> <span class="ow">or</span> <span class="n">teacher_checkpoint_path</span> <span class="ow">or</span> <span class="n">load_kd_model_checkpoint</span> <span class="ow">or</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">teacher_architecture</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">)):</span>
- <span class="k">raise</span> <span class="n">TeacherKnowledgeException</span><span class="p">()</span>
- <span class="k">def</span> <span class="nf">_validate_num_classes</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">student_arch_params</span><span class="p">,</span> <span class="n">teacher_arch_params</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Checks validity of num_classes for num_classes (i.e existence and consistency between subnets)</span>
- <span class="sd"> :param student_arch_params: (dict) Architecture H.P. e.g.: block, num_blocks, num_classes, etc for student</span>
- <span class="sd"> :param teacher_arch_params: (dict) Architecture H.P. e.g.: block, num_blocks, num_classes, etc for teacher</span>
- <span class="sd"> """</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_validate_subnet_num_classes</span><span class="p">(</span><span class="n">student_arch_params</span><span class="p">)</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">_validate_subnet_num_classes</span><span class="p">(</span><span class="n">teacher_arch_params</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">teacher_arch_params</span><span class="p">[</span><span class="s1">'num_classes'</span><span class="p">]</span> <span class="o">!=</span> <span class="n">student_arch_params</span><span class="p">[</span><span class="s1">'num_classes'</span><span class="p">]:</span>
- <span class="k">raise</span> <span class="n">InconsistentParamsException</span><span class="p">(</span><span class="s2">"num_classes"</span><span class="p">,</span> <span class="s2">"student_arch_params"</span><span class="p">,</span> <span class="s2">"num_classes"</span><span class="p">,</span>
- <span class="s2">"teacher_arch_params"</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">_validate_subnet_num_classes</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">subnet_arch_params</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Derives num_classes in student_arch_params/teacher_arch_params from dataset interface or raises an error</span>
- <span class="sd"> when none is given</span>
- <span class="sd"> :param subnet_arch_params: Arch params for student/teacher</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="s1">'num_classes'</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">subnet_arch_params</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">dataset_interface</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
- <span class="k">raise</span> <span class="n">UndefinedNumClassesException</span><span class="p">()</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">subnet_arch_params</span><span class="p">[</span><span class="s1">'num_classes'</span><span class="p">]</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">classes</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">_instantiate_net</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">architecture</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">KDModule</span><span class="p">,</span> <span class="n">KDModule</span><span class="o">.</span><span class="vm">__class__</span><span class="p">,</span> <span class="nb">str</span><span class="p">],</span> <span class="n">arch_params</span><span class="p">:</span> <span class="nb">dict</span><span class="p">,</span>
- <span class="n">checkpoint_params</span><span class="p">:</span> <span class="nb">dict</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <span class="o">-></span> <span class="nb">tuple</span><span class="p">:</span>
- <span class="sd">"""</span>
- <span class="sd"> Instantiates kd_module according to architecture and arch_params, handles pretrained weights for the student</span>
- <span class="sd"> and teacher networks, and the required module manipulation (i.e head replacement) for the teacher network.</span>
- <span class="sd"> :param architecture: String, KDModule or uninstantiated KDModule class describing the netowrks architecture.</span>
- <span class="sd"> :param arch_params: Architecture's parameters passed to networks c'tor.</span>
- <span class="sd"> :param checkpoint_params: checkpoint loading related parameters dictionary with 'pretrained_weights' key,</span>
- <span class="sd"> s.t it's value is a string describing the dataset of the pretrained weights (for example "imagenent").</span>
- <span class="sd"> :return: instantiated netowrk i.e KDModule, architecture_class (will be none when architecture is not str)</span>
- <span class="sd"> """</span>
- <span class="n">student_architecture</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">kwargs</span><span class="p">,</span> <span class="s2">"student_architecture"</span><span class="p">)</span>
- <span class="n">teacher_architecture</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">kwargs</span><span class="p">,</span> <span class="s2">"teacher_architecture"</span><span class="p">)</span>
- <span class="n">student_arch_params</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">kwargs</span><span class="p">,</span> <span class="s2">"student_arch_params"</span><span class="p">)</span>
- <span class="n">teacher_arch_params</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">kwargs</span><span class="p">,</span> <span class="s2">"teacher_arch_params"</span><span class="p">)</span>
- <span class="n">student_arch_params</span> <span class="o">=</span> <span class="n">core_utils</span><span class="o">.</span><span class="n">HpmStruct</span><span class="p">(</span><span class="o">**</span><span class="n">student_arch_params</span><span class="p">)</span>
- <span class="n">teacher_arch_params</span> <span class="o">=</span> <span class="n">core_utils</span><span class="o">.</span><span class="n">HpmStruct</span><span class="p">(</span><span class="o">**</span><span class="n">teacher_arch_params</span><span class="p">)</span>
- <span class="n">student_pretrained_weights</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">checkpoint_params</span><span class="p">,</span> <span class="s1">'student_pretrained_weights'</span><span class="p">)</span>
- <span class="n">teacher_pretrained_weights</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">checkpoint_params</span><span class="p">,</span> <span class="s1">'teacher_pretrained_weights'</span><span class="p">)</span>
- <span class="n">student</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">_instantiate_net</span><span class="p">(</span><span class="n">student_architecture</span><span class="p">,</span> <span class="n">student_arch_params</span><span class="p">,</span>
- <span class="p">{</span><span class="s2">"pretrained_weights"</span><span class="p">:</span> <span class="n">student_pretrained_weights</span><span class="p">})</span>
- <span class="n">teacher</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">_instantiate_net</span><span class="p">(</span><span class="n">teacher_architecture</span><span class="p">,</span> <span class="n">teacher_arch_params</span><span class="p">,</span>
- <span class="p">{</span><span class="s2">"pretrained_weights"</span><span class="p">:</span> <span class="n">teacher_pretrained_weights</span><span class="p">})</span>
- <span class="n">run_teacher_on_eval</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="n">kwargs</span><span class="p">,</span> <span class="s2">"run_teacher_on_eval"</span><span class="p">,</span> <span class="n">default_val</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
- <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">architecture</span><span class="p">,</span> <span class="nb">str</span><span class="p">):</span>
- <span class="n">architecture_cls</span> <span class="o">=</span> <span class="n">KD_ARCHITECTURES</span><span class="p">[</span><span class="n">architecture</span><span class="p">]</span>
- <span class="n">net</span> <span class="o">=</span> <span class="n">architecture_cls</span><span class="p">(</span><span class="n">arch_params</span><span class="o">=</span><span class="n">arch_params</span><span class="p">,</span> <span class="n">student</span><span class="o">=</span><span class="n">student</span><span class="p">,</span> <span class="n">teacher</span><span class="o">=</span><span class="n">teacher</span><span class="p">,</span>
- <span class="n">run_teacher_on_eval</span><span class="o">=</span><span class="n">run_teacher_on_eval</span><span class="p">)</span>
- <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">architecture</span><span class="p">,</span> <span class="n">KDModule</span><span class="o">.</span><span class="vm">__class__</span><span class="p">):</span>
- <span class="n">net</span> <span class="o">=</span> <span class="n">architecture</span><span class="p">(</span><span class="n">arch_params</span><span class="o">=</span><span class="n">arch_params</span><span class="p">,</span> <span class="n">student</span><span class="o">=</span><span class="n">student</span><span class="p">,</span> <span class="n">teacher</span><span class="o">=</span><span class="n">teacher</span><span class="p">,</span>
- <span class="n">run_teacher_on_eval</span><span class="o">=</span><span class="n">run_teacher_on_eval</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">net</span> <span class="o">=</span> <span class="n">architecture</span>
- <span class="k">return</span> <span class="n">net</span>
- <span class="k">def</span> <span class="nf">_load_checkpoint_to_model</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Initializes teacher weights with teacher_checkpoint_path if needed, then handles checkpoint loading for</span>
- <span class="sd"> the entire KD network following the same logic as in SgModel.</span>
- <span class="sd"> """</span>
- <span class="n">teacher_checkpoint_path</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">checkpoint_params</span><span class="p">,</span> <span class="s2">"teacher_checkpoint_path"</span><span class="p">)</span>
- <span class="n">teacher_net</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">net</span><span class="o">.</span><span class="n">module</span><span class="o">.</span><span class="n">teacher</span>
- <span class="k">if</span> <span class="n">teacher_checkpoint_path</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
- <span class="c1"># WARN THAT TEACHER_CKPT WILL OVERRIDE TEACHER'S PRETRAINED WEIGHTS</span>
- <span class="n">teacher_pretrained_weights</span> <span class="o">=</span> <span class="n">get_param</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">checkpoint_params</span><span class="p">,</span> <span class="s2">"teacher_pretrained_weights"</span><span class="p">)</span>
- <span class="k">if</span> <span class="n">teacher_pretrained_weights</span><span class="p">:</span>
- <span class="n">logger</span><span class="o">.</span><span class="n">warning</span><span class="p">(</span>
- <span class="n">teacher_checkpoint_path</span> <span class="o">+</span> <span class="s2">" checkpoint is "</span>
- <span class="s2">"overriding "</span> <span class="o">+</span> <span class="n">teacher_pretrained_weights</span> <span class="o">+</span> <span class="s2">" for teacher model"</span><span class="p">)</span>
- <span class="c1"># ALWAYS LOAD ITS EMA IF IT EXISTS</span>
- <span class="n">load_teachers_ema</span> <span class="o">=</span> <span class="s1">'ema_net'</span> <span class="ow">in</span> <span class="n">read_ckpt_state_dict</span><span class="p">(</span><span class="n">teacher_checkpoint_path</span><span class="p">)</span><span class="o">.</span><span class="n">keys</span><span class="p">()</span>
- <span class="n">load_checkpoint_to_model</span><span class="p">(</span><span class="n">ckpt_local_path</span><span class="o">=</span><span class="n">teacher_checkpoint_path</span><span class="p">,</span>
- <span class="n">load_backbone</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
- <span class="n">net</span><span class="o">=</span><span class="n">teacher_net</span><span class="p">,</span>
- <span class="n">strict</span><span class="o">=</span><span class="s1">'no_key_matching'</span><span class="p">,</span>
- <span class="n">load_weights_only</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
- <span class="n">load_ema_as_net</span><span class="o">=</span><span class="n">load_teachers_ema</span><span class="p">)</span>
- <span class="nb">super</span><span class="p">(</span><span class="n">KDModel</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">_load_checkpoint_to_model</span><span class="p">()</span>
- <span class="k">def</span> <span class="nf">_add_metrics_update_callback</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">phase</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Adds KDModelMetricsUpdateCallback to be fired at phase</span>
- <span class="sd"> :param phase: Phase for the metrics callback to be fired at</span>
- <span class="sd"> """</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">phase_callbacks</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">KDModelMetricsUpdateCallback</span><span class="p">(</span><span class="n">phase</span><span class="p">))</span>
- <span class="k">def</span> <span class="nf">_get_hyper_param_config</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Creates a training hyper param config for logging with additional KD related hyper params.</span>
- <span class="sd"> """</span>
- <span class="n">hyper_param_config</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">_get_hyper_param_config</span><span class="p">()</span>
- <span class="n">hyper_param_config</span><span class="o">.</span><span class="n">update</span><span class="p">({</span><span class="s2">"student_architecture"</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">student_architecture</span><span class="p">,</span>
- <span class="s2">"teacher_architecture"</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">teacher_architecture</span><span class="p">,</span>
- <span class="s2">"student_arch_params"</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">student_arch_params</span><span class="p">,</span>
- <span class="s2">"teacher_arch_params"</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">teacher_arch_params</span>
- <span class="p">})</span>
- <span class="k">return</span> <span class="n">hyper_param_config</span>
- <span class="k">def</span> <span class="nf">_instantiate_ema_model</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">decay</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.9999</span><span class="p">,</span> <span class="n">beta</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mi">15</span><span class="p">,</span> <span class="n">exp_activation</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span> <span class="o">-></span> <span class="n">KDModelEMA</span><span class="p">:</span>
- <span class="sd">"""Instantiate KD ema model for KDModule.</span>
- <span class="sd"> If the model is of class KDModule, the instance will be adapted to work on knowledge distillation.</span>
- <span class="sd"> :param decay: the maximum decay value. as the training process advances, the decay will climb towards</span>
- <span class="sd"> this value until the EMA_t+1 = EMA_t * decay + TRAINING_MODEL * (1- decay)</span>
- <span class="sd"> :param beta: the exponent coefficient. The higher the beta, the sooner in the training the decay will</span>
- <span class="sd"> saturate to its final value. beta=15 is ~40% of the training process.</span>
- <span class="sd"> :param exp_activation:</span>
- <span class="sd"> """</span>
- <span class="k">return</span> <span class="n">KDModelEMA</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">net</span><span class="p">,</span> <span class="n">decay</span><span class="p">,</span> <span class="n">beta</span><span class="p">,</span> <span class="n">exp_activation</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">_save_best_checkpoint</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">epoch</span><span class="p">,</span> <span class="n">state</span><span class="p">):</span>
- <span class="sd">"""</span>
- <span class="sd"> Overrides parent best_ckpt saving to modify the state dict so that we only save the student.</span>
- <span class="sd"> """</span>
- <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">ema</span><span class="p">:</span>
- <span class="n">best_net</span> <span class="o">=</span> <span class="n">core_utils</span><span class="o">.</span><span class="n">WrappedModel</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">ema_model</span><span class="o">.</span><span class="n">ema</span><span class="o">.</span><span class="n">module</span><span class="o">.</span><span class="n">student</span><span class="p">)</span>
- <span class="n">state</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s2">"ema_net"</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">best_net</span> <span class="o">=</span> <span class="n">core_utils</span><span class="o">.</span><span class="n">WrappedModel</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">net</span><span class="o">.</span><span class="n">module</span><span class="o">.</span><span class="n">student</span><span class="p">)</span>
- <span class="n">state</span><span class="p">[</span><span class="s2">"net"</span><span class="p">]</span> <span class="o">=</span> <span class="n">best_net</span><span class="o">.</span><span class="n">state_dict</span><span class="p">()</span>
- <span class="bp">self</span><span class="o">.</span><span class="n">sg_logger</span><span class="o">.</span><span class="n">add_checkpoint</span><span class="p">(</span><span class="n">tag</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">ckpt_best_name</span><span class="p">,</span> <span class="n">state_dict</span><span class="o">=</span><span class="n">state</span><span class="p">,</span> <span class="n">global_step</span><span class="o">=</span><span class="n">epoch</span><span class="p">)</span></div>
- </pre></div>
- </div>
- </div>
- <footer>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|