1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
- <!DOCTYPE html>
- <html class="writer-html5" lang="en" >
- <head>
- <meta charset="utf-8" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>SuperGradients — SuperGradients 1.0 documentation</title>
- <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
- <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
- <link rel="stylesheet" href="_static/graphviz.css" type="text/css" />
- <!--[if lt IE 9]>
- <script src="_static/js/html5shiv.min.js"></script>
- <![endif]-->
-
- <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
- <script src="_static/jquery.js"></script>
- <script src="_static/underscore.js"></script>
- <script src="_static/doctools.js"></script>
- <script src="_static/js/theme.js"></script>
- <link rel="index" title="Index" href="genindex.html" />
- <link rel="search" title="Search" href="search.html" />
- <link rel="next" title="Common package" href="super_gradients.common.html" />
- <link rel="prev" title="Welcome to SuperGradients’s documentation!" href="index.html" />
- </head>
- <body class="wy-body-for-nav">
- <div class="wy-grid-for-nav">
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
- <div class="wy-side-scroll">
- <div class="wy-side-nav-search" >
- <a href="index.html" class="icon icon-home"> SuperGradients
- </a>
- <div role="search">
- <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
- <input type="text" name="q" placeholder="Search docs" />
- <input type="hidden" name="check_keywords" value="yes" />
- <input type="hidden" name="area" value="default" />
- </form>
- </div>
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
- <p class="caption"><span class="caption-text">Welcome To SuperGradients</span></p>
- <ul class="current">
- <li class="toctree-l1 current"><a class="current reference internal" href="#">SuperGradients</a><ul>
- <li class="toctree-l2"><a class="reference internal" href="#introduction">Introduction</a><ul>
- <li class="toctree-l3"><a class="reference internal" href="#table-of-content">Table of Content:</a></li>
- </ul>
- </li>
- <li class="toctree-l2"><a class="reference internal" href="#getting-started">Getting Started</a><ul>
- <li class="toctree-l3"><a class="reference internal" href="#quick-start-notebook">Quick Start Notebook</a></li>
- <li class="toctree-l3"><a class="reference internal" href="#supergradients-walkthrough-notebook">SuperGradients Walkthrough Notebook</a></li>
- </ul>
- </li>
- <li class="toctree-l2"><a class="reference internal" href="#installation-methods">Installation Methods</a><ul>
- <li class="toctree-l3"><a class="reference internal" href="#prerequisites">Prerequisites</a></li>
- <li class="toctree-l3"><a class="reference internal" href="#quick-installation-of-stable-version">Quick Installation of stable version</a></li>
- <li class="toctree-l3"><a class="reference internal" href="#installing-from-github">Installing from GitHub</a></li>
- </ul>
- </li>
- <li class="toctree-l2"><a class="reference internal" href="#computer-vision-models-pretrained-checkpoints">Computer Vision Models’ Pretrained Checkpoints</a><ul>
- <li class="toctree-l3"><a class="reference internal" href="#pretrained-classification-pytorch-checkpoints">Pretrained Classification PyTorch Checkpoints</a></li>
- <li class="toctree-l3"><a class="reference internal" href="#pretrained-object-detection-pytorch-checkpoints">Pretrained Object Detection PyTorch Checkpoints</a></li>
- <li class="toctree-l3"><a class="reference internal" href="#pretrained-semantic-segmentation-pytorch-checkpoints">Pretrained Semantic Segmentation PyTorch Checkpoints</a></li>
- </ul>
- </li>
- <li class="toctree-l2"><a class="reference internal" href="#contributing">Contributing</a></li>
- <li class="toctree-l2"><a class="reference internal" href="#citation">Citation</a></li>
- <li class="toctree-l2"><a class="reference internal" href="#community">Community</a></li>
- <li class="toctree-l2"><a class="reference internal" href="#license">License</a></li>
- </ul>
- </li>
- </ul>
- <p class="caption"><span class="caption-text">Technical Documentation</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="super_gradients.common.html">Common package</a></li>
- <li class="toctree-l1"><a class="reference internal" href="super_gradients.training.html">Training package</a></li>
- </ul>
- <p class="caption"><span class="caption-text">User Guide</span></p>
- <ul>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html">What is SuperGradients?</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#introducing-the-supergradients-library">Introducing the SuperGradients library</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#installation">Installation</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#integrating-your-training-code-complete-walkthrough">Integrating Your Training Code - Complete Walkthrough</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#training-parameters">Training Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#logs-and-checkpoints">Logs and Checkpoints</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#dataset-parameters">Dataset Parameters</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#network-architectures">Network Architectures</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#pretrained-models">Pretrained Models</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#how-to-reproduce-our-training-recipes">How To Reproduce Our Training Recipes</a></li>
- <li class="toctree-l1"><a class="reference internal" href="user_guide.html#supergradients-faq">SuperGradients FAQ</a></li>
- </ul>
- </div>
- </div>
- </nav>
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
- <a href="index.html">SuperGradients</a>
- </nav>
- <div class="wy-nav-content">
- <div class="rst-content">
- <div role="navigation" aria-label="Page navigation">
- <ul class="wy-breadcrumbs">
- <li><a href="index.html" class="icon icon-home"></a> »</li>
- <li>SuperGradients</li>
- <li class="wy-breadcrumbs-aside">
- <a href="_sources/welcome.md.txt" rel="nofollow"> View page source</a>
- </li>
- </ul>
- <hr/>
- </div>
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
- <div itemprop="articleBody">
-
- <div align="center">
- <img src="assets/SG_img/SG - Horizontal.png" width="600"/>
- <br/><br/>
- <p><strong>Easily train or fine-tune SOTA computer vision models from one training repository.</strong></p>
- <hr class="docutils" />
- <p><a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-blue" />
- <a href="https://github.com/Deci-AI/super-gradients#computer-vision-models-pretrained-checkpoints" ><img src="https://img.shields.io/badge/pre--trained%20models-19-brightgreen" />
- <a href="https://github.com/Deci-AI/super-gradients/releases"><img src="https://img.shields.io/github/v/release/Deci-AI/super-gradients" />
- <a href="https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q"><img src="https://img.shields.io/badge/slack-community-blueviolet" />
- <a href="https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" />
- <a href="https://deci-ai.github.io/super-gradients/welcome.html"><img src="https://img.shields.io/badge/docs-sphinx-brightgreen" /></p>
- </div>
- <section class="tex2jax_ignore mathjax_ignore" id="supergradients">
- <h1>SuperGradients<a class="headerlink" href="#supergradients" title="Permalink to this headline"></a></h1>
- <section id="introduction">
- <h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
- <p>Welcome to SuperGradients, a free open-source training library for PyTorch-based deep learning models. SuperGradients allows you to train models of any computer vision tasks or import pre-trained SOTA models, such as object detection, classification of images, and semantic segmentation for videos and images.</p>
- <p>Whether you are a beginner or an expert it is likely that you already have your own training script, model, loss function implementation, etc., and thus you experienced with how difficult it is to develop a production ready deep learning model, the overhead of integrating with existing training tools with very different and stiff formats and conventions, how much effort it is to find a suitable architecture for your needs when every repo is focusing on just one task.</p>
- <p>With SuperGradients you can:</p>
- <ul class="simple">
- <li><p>Train models for any Computer Vision task or import production-ready <a class="reference external" href="https://github.com/Deci-AI/super-gradients#pretrained-classification-pytorch-checkpoints">pre-trained SOTA models</a> (detection, segmentation, and classification - YOLOv5, DDRNet, EfficientNet, RegNet, ResNet, MobileNet, etc.)</p></li>
- <li><p>Shorten the training process using tested and proven <a class="reference external" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/recipes">recipes</a> & <a class="reference external" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples">code examples</a></p></li>
- <li><p>Easily configure your own or use plug&play training, dataset, and architecture parameters.</p></li>
- <li><p>Save time and easily integrate it into your codebase.</p></li>
- </ul>
- <div align="center">
- <img src="./assets/SG_img/detection-demo.png" width="600px">
- </div>
- <hr class="docutils" />
- <section id="table-of-content">
- <h3>Table of Content:<a class="headerlink" href="#table-of-content" title="Permalink to this headline"></a></h3>
- <!-- toc -->
- <ul class="simple">
- <li><p><a class="reference external" href="#getting-started">Getting Started</a></p>
- <ul>
- <li><p><a class="reference external" href="#quick-start-notebook">Quick Start Notebook</a></p></li>
- <li><p><a class="reference external" href="#supergradients-walkthrough-notebook">Walkthrough Notebook</a></p></li>
- </ul>
- </li>
- <li><p><a class="reference external" href="#installation-methods">Installation Methods</a></p>
- <ul>
- <li><p><a class="reference external" href="#prerequisites">Prerequisites</a></p></li>
- <li><p><a class="reference external" href="#quick-installation-of-stable-version">Quick Installation of stable version</a></p></li>
- <li><p><a class="reference external" href="#installing-from-github">Installing from GitHub</a></p></li>
- </ul>
- </li>
- <li><p><a class="reference external" href="#computer-vision-models-pretrained-checkpoints">Computer Vision Models’ Pretrained Checkpoints</a></p>
- <ul>
- <li><p><a class="reference external" href="#pretrained-classification-pytorch-checkpoints">Pretrained Classification PyTorch Checkpoints</a></p></li>
- <li><p><a class="reference external" href="#pretrained-object-detection-pytorch-checkpoints">Pretrained Object Detection PyTorch Checkpoints</a></p></li>
- <li><p><a class="reference external" href="#pretrained-semantic-segmentation-pytorch-checkpoints">Pretrained Semantic Segmentation PyTorch Checkpoints</a></p></li>
- </ul>
- </li>
- <li><p><a class="reference external" href="#contributing">Contributing</a></p></li>
- <li><p><a class="reference external" href="#citation">Citation</a></p></li>
- <li><p><a class="reference external" href="#community">Community</a></p></li>
- <li><p><a class="reference external" href="#license">License</a></p></li>
- </ul>
- <!-- tocstop -->
- </section>
- </section>
- <section id="getting-started">
- <h2>Getting Started<a class="headerlink" href="#getting-started" title="Permalink to this headline"></a></h2>
- <section id="quick-start-notebook">
- <h3>Quick Start Notebook<a class="headerlink" href="#quick-start-notebook" title="Permalink to this headline"></a></h3>
- <p>Get started with our quick start notebook on Google Colab for a quick and easy start using free GPU hardware</p>
- <table class="tfo-notebook-buttons" align="left">
- <td>
- <a target="_blank" href="https://colab.research.google.com/drive/12cURMPVQrvhgYle-wGmE2z8b_p90BdL0?usp=sharing"><img src="./assets/SG_img/colab_logo.png" />SuperGradients Quick Start in Google Colab</a>
- </td>
- <td>
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_.ipynb"><img src="./assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
- <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
- </td>
- </table>
- </br></br>
- </section>
- <section id="supergradients-walkthrough-notebook">
- <h3>SuperGradients Walkthrough Notebook<a class="headerlink" href="#supergradients-walkthrough-notebook" title="Permalink to this headline"></a></h3>
- <p>Learn more about SuperGradients training components with our walkthrough notebook on Google Colab for an easy to use tutorial using free GPU hardware</p>
- <table class="tfo-notebook-buttons" align="left">
- <td>
- <a target="_blank" href="https://colab.research.google.com/drive/1smwh4EAgE8PwnCtwsdU8a9D9Ezfh6FQK?usp=sharing"><img src="./assets/SG_img/colab_logo.png" />SuperGradients Walkthrough in Google Colab</a>
- </td>
- <td>
- <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_Walkthrough%20.ipynb"><img src="./assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
- <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
- </td>
- </table>
- </br></br>
- </section>
- </section>
- <section id="installation-methods">
- <h2>Installation Methods<a class="headerlink" href="#installation-methods" title="Permalink to this headline"></a></h2>
- <section id="prerequisites">
- <h3>Prerequisites<a class="headerlink" href="#prerequisites" title="Permalink to this headline"></a></h3>
- <p>General requirements:</p>
- <ul class="simple">
- <li><p>Python 3.7, 3.8 or 3.9 installed.</p></li>
- <li><p>torch>=1.9.0</p>
- <ul>
- <li><p>https://pytorch.org/get-started/locally/</p></li>
- </ul>
- </li>
- <li><p>The python packages that are specified in requirements.txt;</p></li>
- </ul>
- <p>To train on nvidia GPUs:</p>
- <ul class="simple">
- <li><p><a class="reference external" href="https://developer.nvidia.com/cuda-11.2.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu">Nvidia CUDA Toolkit >= 11.2</a></p></li>
- <li><p>CuDNN >= 8.1.x</p></li>
- <li><p>Nvidia Driver with CUDA >= 11.2 support (≥460.x)</p></li>
- </ul>
- </section>
- <section id="quick-installation-of-stable-version">
- <h3>Quick Installation of stable version<a class="headerlink" href="#quick-installation-of-stable-version" title="Permalink to this headline"></a></h3>
- <p><strong>Not yet avilable in PyPi</strong></p>
- <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span> pip install super-gradients
- </pre></div>
- </div>
- <p>That’s it !</p>
- </section>
- <section id="installing-from-github">
- <h3>Installing from GitHub<a class="headerlink" href="#installing-from-github" title="Permalink to this headline"></a></h3>
- <div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pip install git+https://github.com/Deci-AI/super-gradients.git@stable
- </pre></div>
- </div>
- </section>
- </section>
- <section id="computer-vision-models-pretrained-checkpoints">
- <h2>Computer Vision Models’ Pretrained Checkpoints<a class="headerlink" href="#computer-vision-models-pretrained-checkpoints" title="Permalink to this headline"></a></h2>
- <section id="pretrained-classification-pytorch-checkpoints">
- <h3>Pretrained Classification PyTorch Checkpoints<a class="headerlink" href="#pretrained-classification-pytorch-checkpoints" title="Permalink to this headline"></a></h3>
- <table class="colwidths-auto docutils align-default">
- <thead>
- <tr class="row-odd"><th class="head"><p>Model</p></th>
- <th class="head"><p>Dataset</p></th>
- <th class="head"><p>Resolution</p></th>
- <th class="head"><p>Top-1</p></th>
- <th class="head"><p>Top-5</p></th>
- <th class="head"><p>Latency b1<sub>T4</sub></p></th>
- <th class="text-center head"><p>Throughout b1<sub>T4</sub></p></th>
- </tr>
- </thead>
- <tbody>
- <tr class="row-even"><td><p>EfficientNet B0</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>77.62</p></td>
- <td><p>93.49</p></td>
- <td><p><strong>1.16ms</strong></p></td>
- <td class="text-center"><p><strong>862fps</strong></p></td>
- </tr>
- <tr class="row-odd"><td><p>RegNetY200</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>70.88</p></td>
- <td><p>89.35</p></td>
- <td><p><strong>1.07ms</strong></p></td>
- <td class="text-center"><p><strong>928.3fps</strong></p></td>
- </tr>
- <tr class="row-even"><td><p>RegNetY400</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>74.74</p></td>
- <td><p>91.46</p></td>
- <td><p><strong>1.22ms</strong></p></td>
- <td class="text-center"><p><strong>816.5fps</strong></p></td>
- </tr>
- <tr class="row-odd"><td><p>RegNetY600</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>76.18</p></td>
- <td><p>92.34</p></td>
- <td><p><strong>1.19ms</strong></p></td>
- <td class="text-center"><p><strong>838.5fps</strong></p></td>
- </tr>
- <tr class="row-even"><td><p>RegNetY800</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>77.07</p></td>
- <td><p>93.26</p></td>
- <td><p><strong>1.18ms</strong></p></td>
- <td class="text-center"><p><strong>841.4fps</strong></p></td>
- </tr>
- <tr class="row-odd"><td><p>ResNet18</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>70.6</p></td>
- <td><p>89.64</p></td>
- <td><p><strong>0.599ms</strong></p></td>
- <td class="text-center"><p><strong>1669fps</strong></p></td>
- </tr>
- <tr class="row-even"><td><p>ResNet34</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>74.13</p></td>
- <td><p>91.7</p></td>
- <td><p><strong>0.89ms</strong></p></td>
- <td class="text-center"><p><strong>1123fps</strong></p></td>
- </tr>
- <tr class="row-odd"><td><p>ResNet50</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>76.3</p></td>
- <td><p>93.0</p></td>
- <td><p><strong>0.94ms</strong></p></td>
- <td class="text-center"><p><strong>1063fps</strong></p></td>
- </tr>
- <tr class="row-even"><td><p>MobileNetV3_large-150 epochs</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>73.79</p></td>
- <td><p>91.54</p></td>
- <td><p><strong>0.87ms</strong></p></td>
- <td class="text-center"><p><strong>1149fps</strong></p></td>
- </tr>
- <tr class="row-odd"><td><p>MobileNetV3_large-300 epochs</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>74.52</p></td>
- <td><p>91.92</p></td>
- <td><p><strong>0.87ms</strong></p></td>
- <td class="text-center"><p><strong>1149fps</strong></p></td>
- </tr>
- <tr class="row-even"><td><p>MobileNetV3_small</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>67.45</p></td>
- <td><p>87.47</p></td>
- <td><p><strong>0.75ms</strong></p></td>
- <td class="text-center"><p><strong>1333fps</strong></p></td>
- </tr>
- <tr class="row-odd"><td><p>MobileNetV2_w1</p></td>
- <td><p>ImageNet</p></td>
- <td><p>224x224</p></td>
- <td><p>73.08</p></td>
- <td><p>91.1</p></td>
- <td><p><strong>0.58ms</strong></p></td>
- <td class="text-center"><p><strong>1724fps</strong></p></td>
- </tr>
- </tbody>
- </table>
- <blockquote>
- <div><p><strong>NOTE:</strong> Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1</p>
- </div></blockquote>
- </section>
- <section id="pretrained-object-detection-pytorch-checkpoints">
- <h3>Pretrained Object Detection PyTorch Checkpoints<a class="headerlink" href="#pretrained-object-detection-pytorch-checkpoints" title="Permalink to this headline"></a></h3>
- <table class="colwidths-auto docutils align-default">
- <thead>
- <tr class="row-odd"><th class="head"><p>Model</p></th>
- <th class="head"><p>Dataset</p></th>
- <th class="head"><p>Resolution</p></th>
- <th class="head"><p>mAP<sup>val<br>0.5:0.95</p></th>
- <th class="head"><p>Latency b1<sub>T4</sub></p></th>
- <th class="text-center head"><p>Throughout b64<sub>T4</sub></p></th>
- </tr>
- </thead>
- <tbody>
- <tr class="row-even"><td><p>YOLOv5 nano</p></td>
- <td><p>COCO</p></td>
- <td><p>640x640</p></td>
- <td><p>27.7</p></td>
- <td><p><strong>6.55ms</strong></p></td>
- <td class="text-center"><p><strong>177.62fps</strong></p></td>
- </tr>
- <tr class="row-odd"><td><p>YOLOv5 small</p></td>
- <td><p>COCO</p></td>
- <td><p>640x640</p></td>
- <td><p>37.3</p></td>
- <td><p><strong>7.13ms</strong></p></td>
- <td class="text-center"><p><strong>159.44fps</strong></p></td>
- </tr>
- <tr class="row-even"><td><p>YOLOv5 medium</p></td>
- <td><p>COCO</p></td>
- <td><p>640x640</p></td>
- <td><p>45.2</p></td>
- <td><p><strong>8.95ms</strong></p></td>
- <td class="text-center"><p><strong>121.78fps</strong></p></td>
- </tr>
- <tr class="row-odd"><td><p>YOLOv5 large</p></td>
- <td><p>COCO</p></td>
- <td><p>640x640</p></td>
- <td><p>48.0</p></td>
- <td><p><strong>11.49ms</strong></p></td>
- <td class="text-center"><p><strong>95.99fps</strong></p></td>
- </tr>
- </tbody>
- </table>
- <blockquote>
- <div><p><strong>NOTE:</strong> Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency) and batch size 64 (througput)</p>
- </div></blockquote>
- </section>
- <section id="pretrained-semantic-segmentation-pytorch-checkpoints">
- <h3>Pretrained Semantic Segmentation PyTorch Checkpoints<a class="headerlink" href="#pretrained-semantic-segmentation-pytorch-checkpoints" title="Permalink to this headline"></a></h3>
- <table class="colwidths-auto docutils align-default">
- <thead>
- <tr class="row-odd"><th class="head"><p>Model</p></th>
- <th class="head"><p>Dataset</p></th>
- <th class="head"><p>Resolution</p></th>
- <th class="head"><p>mIoU</p></th>
- <th class="head"><p>Latency b1<sub>T4</sub></p></th>
- <th class="text-center head"><p>Throughout b64<sub>T4</sub></p></th>
- </tr>
- </thead>
- <tbody>
- <tr class="row-even"><td><p>DDRNet23</p></td>
- <td><p>Cityscapes</p></td>
- <td><p>1024x2048</p></td>
- <td><p>78.65</p></td>
- <td><p><strong>25.48ms</strong></p></td>
- <td class="text-center"><p><strong>37.4fps</strong></p></td>
- </tr>
- <tr class="row-odd"><td><p>DDRNet23 slim</p></td>
- <td><p>Cityscapes</p></td>
- <td><p>1024x2048</p></td>
- <td><p>76.6</p></td>
- <td><p><strong>22.24ms</strong></p></td>
- <td class="text-center"><p><strong>45.7fps</strong></p></td>
- </tr>
- <tr class="row-even"><td><p>ShelfNet_LW_34</p></td>
- <td><p>COCO Segmentation (21 classes from PASCAL including background)</p></td>
- <td><p>512x512</p></td>
- <td><p>65.1</p></td>
- <td><p><strong>-</strong></p></td>
- <td class="text-center"><p><strong>-</strong></p></td>
- </tr>
- </tbody>
- </table>
- <blockquote>
- <div><p><strong>NOTE:</strong> Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency) and batch size 64 (througput)</p>
- </div></blockquote>
- </section>
- </section>
- <section id="contributing">
- <h2>Contributing<a class="headerlink" href="#contributing" title="Permalink to this headline"></a></h2>
- <p>To learn about making a contribution to SuperGradients, please see our <a class="reference internal" href="CONTRIBUTING.html"><span class="doc std std-doc">Contribution page</span></a>.</p>
- <p>Our awesome contributors:</p>
- <a href="https://github.com/Deci-AI/super-gradients/graphs/contributors">
- <img src="https://contrib.rocks/image?repo=Deci-AI/super-gradients" />
- </a>
- <p><br/>Made with <a class="reference external" href="https://contrib.rocks">contrib.rocks</a>.</p>
- </section>
- <section id="citation">
- <h2>Citation<a class="headerlink" href="#citation" title="Permalink to this headline"></a></h2>
- <p>If you use SuperGradients library or benchmark in your research, please cite SuperGradients deep learning training library.</p>
- </section>
- <section id="community">
- <h2>Community<a class="headerlink" href="#community" title="Permalink to this headline"></a></h2>
- <p>If you want to be a part of SuperGradients growing community, hear about all the exciting news and updates, need help, request for advanced features,
- or want to file a bug or issue report, we would love to welcome you aboard!</p>
- <ul class="simple">
- <li><p>Slack is the place to be and ask questions about SuperGradients and get support. <a class="reference external" href="https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q">Click here to join our Slack</a></p></li>
- <li><p>To report a bug, <a class="reference external" href="https://github.com/Deci-AI/super-gradients/issues">file an issue</a> on GitHub.</p></li>
- <li><p>You can also join the <a class="reference external" href="https://deci.ai/resources/blog/">community mailing list</a>
- to ask questions about the project and receive announcements.</p></li>
- </ul>
- </section>
- <section id="license">
- <h2>License<a class="headerlink" href="#license" title="Permalink to this headline"></a></h2>
- <p>This project is released under the <a class="reference internal" href="LICENSE.html"><span class="doc std std-doc">Apache 2.0 license</span></a>.</p>
- </section>
- </section>
- </div>
- </div>
- <footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
- <a href="index.html" class="btn btn-neutral float-left" title="Welcome to SuperGradients’s documentation!" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
- <a href="super_gradients.common.html" class="btn btn-neutral float-right" title="Common package" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
- </div>
- <hr/>
- <div role="contentinfo">
- <p>© Copyright 2021, SuperGradients team.</p>
- </div>
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
-
- </footer>
- </div>
- </div>
- </section>
- </div>
- <script>
- jQuery(function () {
- SphinxRtdTheme.Navigation.enable(true);
- });
- </script>
- </body>
- </html>
|