Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

phase_delegates_test.py 4.1 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  1. import unittest
  2. from super_gradients.training import Trainer
  3. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  4. from super_gradients.training.metrics import Accuracy
  5. from super_gradients.training.models import LeNet
  6. from super_gradients.training.utils.callbacks import Phase, PhaseCallback, PhaseContext
  7. class ContextMethodsCheckerCallback(PhaseCallback):
  8. """
  9. Callback for checking that at a certain phase specific Trainer methods are accessible.
  10. """
  11. def __init__(self, phase: Phase, accessible_method_names: list, non_accessible_method_names: list):
  12. super(ContextMethodsCheckerCallback, self).__init__(phase)
  13. self.accessible_method_names = accessible_method_names
  14. self.non_accessible_method_names = non_accessible_method_names
  15. self.result = True
  16. def __call__(self, context: PhaseContext):
  17. for accessible_method_name in self.accessible_method_names:
  18. if not hasattr(context.context_methods, accessible_method_name):
  19. self.result = False
  20. for non_accessible_method_name in self.non_accessible_method_names:
  21. if hasattr(context.context_methods, non_accessible_method_name):
  22. self.result = False
  23. class ContextMethodsTest(unittest.TestCase):
  24. def test_access_to_methods_by_phase(self):
  25. net = LeNet()
  26. trainer = Trainer("test_access_to_methods_by_phase")
  27. phase_callbacks = []
  28. for phase in Phase:
  29. if phase in [Phase.PRE_TRAINING, Phase.TRAIN_EPOCH_START, Phase.TRAIN_EPOCH_END, Phase.VALIDATION_EPOCH_END,
  30. Phase.VALIDATION_END_BEST_EPOCH, Phase.POST_TRAINING]:
  31. phase_callbacks.append(ContextMethodsCheckerCallback(phase=phase, accessible_method_names=["get_net",
  32. "set_net",
  33. "set_ckpt_best_name",
  34. "reset_best_metric",
  35. "validate_epoch"],
  36. non_accessible_method_names=[]))
  37. else:
  38. phase_callbacks.append(
  39. ContextMethodsCheckerCallback(phase=phase, non_accessible_method_names=["get_net",
  40. "set_net",
  41. "set_ckpt_best_name",
  42. "reset_best_metric",
  43. "validate_epoch",
  44. "set_ema"],
  45. accessible_method_names=[]))
  46. train_params = {"max_epochs": 1, "lr_updates": [], "lr_decay_factor": 0.1, "lr_mode": "step",
  47. "lr_warmup_epochs": 0, "initial_lr": 1, "loss": "cross_entropy", "optimizer": 'SGD',
  48. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  49. "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
  50. "metric_to_watch": "Accuracy",
  51. "greater_metric_to_watch_is_better": True, "ema": False, "phase_callbacks": phase_callbacks}
  52. trainer.train(model=net, training_params=train_params,
  53. train_loader=classification_test_dataloader(batch_size=4),
  54. valid_loader=classification_test_dataloader(batch_size=4))
  55. for phase_callback in phase_callbacks:
  56. if isinstance(phase_callback, ContextMethodsCheckerCallback):
  57. self.assertTrue(phase_callback.result)
  58. if __name__ == '__main__':
  59. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...