Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

deci_lab_export_test.py 3.1 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
  1. import unittest
  2. from super_gradients import Trainer
  3. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  4. from super_gradients.training.metrics import Accuracy, Top5
  5. from super_gradients.training.models import ResNet18
  6. from torch.optim import SGD
  7. from super_gradients.training.utils.callbacks import DeciLabUploadCallback, ModelConversionCheckCallback
  8. from deci_lab_client.models import Metric, QuantizationLevel, ModelMetadata, OptimizationRequestForm
  9. class DeciLabUploadTest(unittest.TestCase):
  10. def setUp(self) -> None:
  11. self.trainer = Trainer("deci_lab_export_test_model")
  12. def test_train_with_deci_lab_integration(self):
  13. model_meta_data = ModelMetadata(
  14. name="model_for_deci_lab_upload_test",
  15. primary_batch_size=1,
  16. architecture="Resnet18",
  17. framework="pytorch",
  18. dl_task="classification",
  19. input_dimensions=(3, 224, 224),
  20. primary_hardware="XEON",
  21. dataset_name="imagenet",
  22. description="ResNet18 ONNX deci.ai Test",
  23. tags=["imagenet", "resnet18"],
  24. )
  25. optimization_request_form = OptimizationRequestForm(
  26. target_hardware="XEON",
  27. target_batch_size=1,
  28. target_metric=Metric.LATENCY,
  29. optimize_model_size=True,
  30. quantization_level=QuantizationLevel.FP16,
  31. optimize_autonac=True,
  32. )
  33. model_conversion_callback = ModelConversionCheckCallback(model_meta_data=model_meta_data)
  34. deci_lab_callback = DeciLabUploadCallback(model_meta_data=model_meta_data, optimization_request_form=optimization_request_form)
  35. net = ResNet18(num_classes=5, arch_params={})
  36. train_params = {
  37. "max_epochs": 2,
  38. "lr_updates": [1],
  39. "lr_decay_factor": 0.1,
  40. "lr_mode": "step",
  41. "lr_warmup_epochs": 0,
  42. "initial_lr": 0.1,
  43. "loss": "cross_entropy",
  44. "optimizer": self.optimizer,
  45. "criterion_params": {},
  46. "train_metrics_list": [Accuracy(), Top5()],
  47. "valid_metrics_list": [Accuracy(), Top5()],
  48. "metric_to_watch": "Accuracy",
  49. "greater_metric_to_watch_is_better": True,
  50. "phase_callbacks": [model_conversion_callback, deci_lab_callback],
  51. }
  52. self.optimizer = SGD(params=net.parameters(), lr=0.1)
  53. self.trainer.train(
  54. model=net, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader()
  55. )
  56. # CLEANUP
  57. # FIXME: MISUSE OF DECI_PLATFROM CALLBACK:
  58. # https://github.com/Deci-AI/deci_trainer/pull/106/files/2ed12b78adc9886faabad9d952969ff5479e9237#r708092979
  59. new_model_from_repo_name = model_meta_data.name + "_1_1"
  60. your_model_from_repo = deci_lab_callback.platform_client.get_model_by_name(name=new_model_from_repo_name).data
  61. deci_lab_callback.platform_client.delete_model(your_model_from_repo.model_id)
  62. if __name__ == "__main__":
  63. unittest.main()
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...