1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
- import torch
- from torch.optim import Optimizer
- """
- This implementation is taken from timm's github:
- https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/rmsprop_tf.py
- """
- """ RMSProp modified to behave like Tensorflow impl
- Originally cut & paste from PyTorch RMSProp
- https://github.com/pytorch/pytorch/blob/063946d2b3f3f1e953a2a3b54e0b34f1393de295/torch/optim/rmsprop.py
- Licensed under BSD-Clause 3 (ish), https://github.com/pytorch/pytorch/blob/master/LICENSE
- Modifications Copyright 2020 Ross Wightman
- """
- class RMSpropTF(Optimizer):
- """Implements RMSprop algorithm (TensorFlow style epsilon)
- NOTE: This is a direct cut-and-paste of PyTorch RMSprop with eps applied before sqrt
- and a few other modifications to closer match Tensorflow for matching hyper-params.
- Noteworthy changes include:
- 1. Epsilon applied inside square-root
- 2. square_avg initialized to ones
- 3. LR scaling of update accumulated in momentum buffer
- Proposed by G. Hinton in his
- `course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_.
- The centered version first appears in `Generating Sequences
- With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_."""
- def __init__(self, params, lr=1e-2, alpha=0.9, eps=1e-10, weight_decay=0, momentum=0., centered=False,
- decoupled_decay=False, lr_in_momentum=True):
- """RMSprop optimizer that follows the tf's RMSprop characteristics
- :param params (iterable): iterable of parameters to optimize or dicts defining parameter groups
- :param lr (float, optional): learning rate
- :param momentum (float, optional): momentum factor
- :param alpha (float, optional): smoothing (decay) constant
- :param eps (float, optional): term added to the denominator to improve numerical stability
- :param centered (bool, optional) : if ``True``, compute the centered RMSProp, the gradient is normalized by an
- estimation of its variance
- :param weight_decay (float, optional): weight decay (L2 penalty)
- :param decoupled_decay (bool, optional): decoupled weight decay as per https://arxiv.org/abs/1711.05101
- :param lr_in_momentum (bool, optional): learning rate scaling is included in the momentum buffer update as per
- defaults in Tensorflow
- """
- if not 0.0 <= lr:
- raise ValueError("Invalid learning rate: {}".format(lr))
- if not 0.0 <= eps:
- raise ValueError("Invalid epsilon value: {}".format(eps))
- if not 0.0 <= momentum:
- raise ValueError("Invalid momentum value: {}".format(momentum))
- if not 0.0 <= weight_decay:
- raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
- if not 0.0 <= alpha:
- raise ValueError("Invalid alpha value: {}".format(alpha))
- defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay,
- decoupled_decay=decoupled_decay, lr_in_momentum=lr_in_momentum)
- super(RMSpropTF, self).__init__(params, defaults)
- def __setstate__(self, state):
- super(RMSpropTF, self).__setstate__(state)
- for group in self.param_groups:
- group.setdefault('momentum', 0)
- group.setdefault('centered', False)
- def step(self, closure=None): # noqa: C901
- """Performs a single optimization step.
- Arguments:
- closure (callable, optional): A closure that reevaluates the model
- and returns the loss.
- """
- loss = None
- if closure is not None:
- loss = closure()
- for group in self.param_groups:
- for p in group['params']:
- if p.grad is None:
- continue
- grad = p.grad.data
- if grad.is_sparse:
- raise RuntimeError('RMSprop does not support sparse gradients')
- state = self.state[p]
- # State initialization
- if len(state) == 0:
- state['step'] = 0
- state['square_avg'] = torch.ones_like(p.data) # PyTorch inits to zero
- if group['momentum'] > 0:
- state['momentum_buffer'] = torch.zeros_like(p.data)
- if group['centered']:
- state['grad_avg'] = torch.zeros_like(p.data)
- square_avg = state['square_avg']
- one_minus_alpha = 1. - group['alpha']
- state['step'] += 1
- if group['weight_decay'] != 0:
- if 'decoupled_decay' in group and group['decoupled_decay']:
- p.data.add_(-group['weight_decay'], p.data)
- else:
- grad = grad.add(group['weight_decay'], p.data)
- # Tensorflow order of ops for updating squared avg
- square_avg.add_(one_minus_alpha, grad.pow(2) - square_avg)
- # square_avg.mul_(alpha).addcmul_(1 - alpha, grad, grad) # PyTorch original
- if group['centered']:
- grad_avg = state['grad_avg']
- grad_avg.add_(one_minus_alpha, grad - grad_avg)
- # grad_avg.mul_(alpha).add_(1 - alpha, grad) # PyTorch original
- avg = square_avg.addcmul(-1, grad_avg, grad_avg).add(group['eps']).sqrt_() # eps moved in sqrt
- else:
- avg = square_avg.add(group['eps']).sqrt_() # eps moved in sqrt
- if group['momentum'] > 0:
- buf = state['momentum_buffer']
- # Tensorflow accumulates the LR scaling in the momentum buffer
- if 'lr_in_momentum' in group and group['lr_in_momentum']:
- buf.mul_(group['momentum']).addcdiv_(group['lr'], grad, avg)
- p.data.add_(-buf)
- else:
- # PyTorch scales the param update by LR
- buf.mul_(group['momentum']).addcdiv_(grad, avg)
- p.data.add_(-group['lr'], buf)
- else:
- p.data.addcdiv_(-group['lr'], grad, avg)
- return loss
|