1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
- import itertools
- from math import sqrt
- import numpy as np
- import torch
- from torch.nn import functional as F
- from super_gradients.training.utils.detection_utils import non_max_suppression, NMS_Type, \
- matrix_non_max_suppression, DetectionPostPredictionCallback
- class DefaultBoxes(object):
- """
- Default Boxes, (aka: anchor boxes or priors boxes) used by SSD model
- """
- def __init__(self, fig_size, feat_size, steps, scales, aspect_ratios, scale_xy=0.1, scale_wh=0.2):
- self.feat_size = feat_size
- self.fig_size = fig_size
- self.scale_xy_ = scale_xy
- self.scale_wh_ = scale_wh
- # According to https://github.com/weiliu89/caffe
- # Calculation method slightly different from paper
- self.steps = steps
- self.scales = scales
- fk = fig_size / np.array(steps)
- self.aspect_ratios = aspect_ratios
- self.default_boxes = []
- # size of feature and number of feature
- for idx, sfeat in enumerate(self.feat_size):
- sk1 = scales[idx] / fig_size
- sk2 = scales[idx + 1] / fig_size
- sk3 = sqrt(sk1 * sk2)
- all_sizes = [(sk1, sk1), (sk3, sk3)]
- for alpha in aspect_ratios[idx]:
- w, h = sk1 * sqrt(alpha), sk1 / sqrt(alpha)
- all_sizes.append((w, h))
- all_sizes.append((h, w))
- for w, h in all_sizes:
- for i, j in itertools.product(range(sfeat), repeat=2):
- cx, cy = (j + 0.5) / fk[idx], (i + 0.5) / fk[idx]
- self.default_boxes.append((cx, cy, w, h))
- self.dboxes = torch.tensor(self.default_boxes, dtype=torch.float)
- self.dboxes.clamp_(min=0, max=1)
- # For IoU calculation
- self.dboxes_xyxy = self.dboxes.clone()
- self.dboxes_xyxy[:, 0] = self.dboxes[:, 0] - 0.5 * self.dboxes[:, 2]
- self.dboxes_xyxy[:, 1] = self.dboxes[:, 1] - 0.5 * self.dboxes[:, 3]
- self.dboxes_xyxy[:, 2] = self.dboxes[:, 0] + 0.5 * self.dboxes[:, 2]
- self.dboxes_xyxy[:, 3] = self.dboxes[:, 1] + 0.5 * self.dboxes[:, 3]
- @property
- def scale_xy(self):
- return self.scale_xy_
- @property
- def scale_wh(self):
- return self.scale_wh_
- def __call__(self, order="xyxy"):
- if order == "xyxy":
- return self.dboxes_xyxy
- if order == "xywh":
- return self.dboxes
- @staticmethod
- def dboxes300_coco():
- figsize = 300
- feat_size = [38, 19, 10, 5, 3, 1]
- steps = [8, 16, 32, 64, 100, 300]
- # use the scales here: https://github.com/amdegroot/ssd.pytorch/blob/master/data/config.py
- scales = [21, 45, 99, 153, 207, 261, 315]
- aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
- return DefaultBoxes(figsize, feat_size, steps, scales, aspect_ratios)
- @staticmethod
- def dboxes300_coco_from19():
- """
- This dbox configuration is a bit different from the original dboxes300_coco
- It is suitable for a network taking the first skip connection from a 19x19 layer (instead of 38x38 in the
- original paper).
- This offers less coverage for small objects but more aspect ratios options to larger objects (the original
- paper supports object starting from size 21 pixels, while this config support objects starting from 60 pixels)
- """
- # https://github.com/qfgaohao/pytorch-ssd/blob/f61ab424d09bf3d4bb3925693579ac0a92541b0d/vision/ssd/config/mobilenetv1_ssd_config.py
- figsize = 300
- feat_size = [19, 10, 5, 3, 2, 1]
- steps = [16, 32, 64, 100, 150, 300]
- scales = [60, 105, 150, 195, 240, 285, 330]
- aspect_ratios = [[2, 3], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3]]
- return DefaultBoxes(figsize, feat_size, steps, scales, aspect_ratios)
- @staticmethod
- def dboxes256_coco():
- figsize = 256
- feat_size = [32, 16, 8, 4, 2, 1]
- steps = [8, 16, 32, 64, 128, 256]
- # use the scales here: https://github.com/amdegroot/ssd.pytorch/blob/master/data/config.py
- scales = [18, 38, 84, 131, 1177, 223, 269]
- aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
- return DefaultBoxes(figsize, feat_size, steps, scales, aspect_ratios)
- class SSDPostPredictCallback(DetectionPostPredictionCallback):
- """
- post prediction callback module to convert and filter predictions coming from the SSD net to a format
- used by all other detection models
- """
- def __init__(self, conf: float = 0.1, iou: float = 0.45, classes: list = None, max_predictions: int = 300,
- nms_type: NMS_Type = NMS_Type.ITERATIVE,
- dboxes: DefaultBoxes = DefaultBoxes.dboxes300_coco(), device='cuda'):
- """
- :param conf: confidence threshold
- :param iou: IoU threshold
- :param classes: (optional list) filter by class
- :param nms_type: the type of nms to use (iterative or matrix)
- """
- super(SSDPostPredictCallback, self).__init__()
- self.conf = conf
- self.iou = iou
- self.nms_type = nms_type
- self.classes = classes
- self.max_predictions = max_predictions
- self.dboxes_xywh = dboxes('xywh').to(device)
- self.scale_xy = dboxes.scale_xy
- self.scale_wh = dboxes.scale_wh
- self.img_size = dboxes.fig_size
- def forward(self, x, device=None):
- bboxes_in = x[0]
- scores_in = x[1]
- bboxes_in = bboxes_in.permute(0, 2, 1)
- scores_in = scores_in.permute(0, 2, 1)
- bboxes_in[:, :, :2] *= self.scale_xy
- bboxes_in[:, :, 2:] *= self.scale_wh
- # CONVERT RELATIVE LOCATIONS INTO ABSOLUTE LOCATION (OUTPUT LOCATIONS ARE RELATIVE TO THE DBOXES)
- bboxes_in[:, :, :2] = bboxes_in[:, :, :2] * self.dboxes_xywh[:, 2:] + self.dboxes_xywh[:, :2]
- bboxes_in[:, :, 2:] = bboxes_in[:, :, 2:].exp() * self.dboxes_xywh[:, 2:]
- scores_in = F.softmax(scores_in, dim=-1) # TODO softmax without first item?
- # REPLACE THE CONFIDENCE OF CLASS NONE WITH OBJECT CONFIDENCE
- # SSD DOES NOT OUTPUT OBJECT CONFIDENCE, REQUIRED FOR THE NMS
- scores_in[:, :, 0] = torch.max(scores_in[:, :, 1:], dim=2)[0]
- bboxes_in *= self.img_size
- nms_input = torch.cat((bboxes_in, scores_in), dim=2)
- if self.nms_type == NMS_Type.ITERATIVE:
- nms_res = non_max_suppression(nms_input, conf_thres=self.conf, iou_thres=self.iou,
- classes=self.classes)
- else:
- nms_res = matrix_non_max_suppression(nms_input, conf_thres=self.conf,
- max_num_of_detections=self.max_predictions)
- # NMS OUTPUT A 0-BASED CLASS LABEL, BUT SSD WORKS WITH 1-BASED CLASS LABEL
- for t in nms_res:
- if t is not None:
- t[:, 5] += 1
- return nms_res
|