Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

darknet53_example.py 1.5 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
  1. # Darknet53 Backbone Training on HAM10000 Dataset
  2. from super_gradients.training import MultiGPUMode
  3. from super_gradients.training import SgModel
  4. from super_gradients.training.datasets.dataset_interfaces.dataset_interface import ClassificationDatasetInterface
  5. # Define Parameters
  6. train_params = {"max_epochs": 110, "lr_updates": [30, 60, 90, 100], "lr_decay_factor": 0.1, "lr_mode": "step",
  7. "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
  8. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9}}
  9. arch_params = {'backbone_mode': False, 'num_classes': 7}
  10. dataset_params = {"batch_size": 16, "test_batch_size": 16, 'dataset_dir': '/data/HAM10000'}
  11. # Define Model
  12. model = SgModel("Darknet53_Backbone_HAM10000",
  13. model_checkpoints_location='local',
  14. device='cuda',
  15. multi_gpu=MultiGPUMode.DATA_PARALLEL)
  16. # Connect Dataset
  17. dataset = ClassificationDatasetInterface(normalization_mean=(0.7483, 0.5154, 0.5353),
  18. normalization_std=(0.1455, 0.1691, 0.1879),
  19. resolution=416,
  20. dataset_params=dataset_params)
  21. model.connect_dataset_interface(dataset, data_loader_num_workers=8)
  22. # Build Model
  23. model.build_model("darknet53", arch_params=arch_params, load_checkpoint=False)
  24. # Start Training
  25. model.train(training_params=train_params)
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...