1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
- import os
- import time
- import signal
- from typing import Union, Any
- import pkg_resources
- import psutil
- import numpy as np
- from PIL import Image
- import matplotlib.pyplot as plt
- import torch
- from super_gradients.common import ADNNModelRepositoryDataInterfaces
- from super_gradients.common.abstractions.abstract_logger import get_logger
- from super_gradients.common.sg_loggers.abstract_sg_logger import AbstractSGLogger
- from super_gradients.common.environment.env_helpers import multi_process_safe
- from super_gradients.training.utils import sg_model_utils
- from super_gradients.training.params import TrainingParams
- logger = get_logger(__name__)
- class BaseSGLogger(AbstractSGLogger):
- def __init__(self, project_name: str,
- experiment_name: str,
- storage_location: str,
- resumed: bool,
- training_params: TrainingParams,
- tb_files_user_prompt: bool = False,
- launch_tensorboard: bool = False,
- tensorboard_port: int = None,
- save_checkpoints_remote: bool = True,
- save_tensorboard_remote: bool = True,
- save_logs_remote: bool = True):
- """
- :param experiment_name: Used for logging and loading purposes
- :param storage_location: If set to 's3' (i.e. s3://my-bucket) saves the Checkpoints in AWS S3 otherwise saves the Checkpoints Locally
- :param resumed: if true, then old tensorboard files will *not* be deleted when tb_files_user_prompt=True
- :param tb_files_user_prompt: Asks user for Tensorboard deletion prompt.
- :param launch_tensorboard: Whether to launch a TensorBoard process.
- :param tensorboard_port: Specific port number for the tensorboard to use when launched (when set to None, some free port
- number will be used
- :param save_checkpoints_remote: Saves checkpoints in s3.
- :param save_tensorboard_remote: Saves tensorboard in s3.
- :param save_logs_remote: Saves log files in s3.
- """
- super().__init__()
- self.project_name = project_name
- self.experiment_name = experiment_name
- self.storage_location = storage_location
- if storage_location.startswith('s3'):
- self.save_checkpoints_remote = save_checkpoints_remote
- self.save_tensorboard_remote = save_tensorboard_remote
- self.save_logs_remote = save_logs_remote
- else:
- if save_checkpoints_remote:
- logger.error('save_checkpoints_remote == True but storage_location is not s3 path. Files will not be saved remotely')
- if save_tensorboard_remote:
- logger.error('save_tensorboard_remote == True but storage_location is not s3 path. Files will not be saved remotely')
- if save_logs_remote:
- logger.error('save_logs_remote == True but storage_location is not s3 path. Files will not be saved remotely')
- self.save_checkpoints_remote = False
- self.save_tensorboard_remote = False
- self.save_logs_remote = False
- self.tensor_board_process = None
- self.max_global_steps = training_params.max_epochs
-
- self._local_dir = pkg_resources.resource_filename('checkpoints', self.experiment_name)
- self._make_dir()
- self._init_tensorboard(resumed, tb_files_user_prompt)
- self._init_log_file()
- self.model_checkpoints_data_interface = ADNNModelRepositoryDataInterfaces(data_connection_location=self.storage_location)
- if launch_tensorboard:
- self._launch_tensorboard(port=tensorboard_port)
- @multi_process_safe
- def _launch_tensorboard(self, port):
- self.tensor_board_process, _ = sg_model_utils.launch_tensorboard_process(self._local_dir, port=port)
- @multi_process_safe
- def _init_tensorboard(self, resumed, tb_files_user_prompt):
- self.tensorboard_writer = sg_model_utils.init_summary_writer(self._local_dir, resumed, tb_files_user_prompt)
- @multi_process_safe
- def _make_dir(self):
- if not os.path.isdir(self._local_dir):
- os.makedirs(self._local_dir)
- @multi_process_safe
- def _init_log_file(self):
- time_string = time.strftime('%b%d_%H_%M_%S', time.localtime())
- self.log_file_path = f'{self._local_dir}/log_{time_string}.txt'
- @multi_process_safe
- def _write_to_log_file(self, lines: list):
- with open(self.log_file_path, 'a' if os.path.exists(self.log_file_path) else 'w') as log_file:
- for line in lines:
- log_file.write(line + '\n')
- @multi_process_safe
- def add_config(self, tag: str, config: dict):
- config_string_markup = ""
- log_lines = ['--------- config parameters ----------']
- for key, val in config.items():
- config_string_markup += f'{key}: {val} \n '
- log_lines.append(f'{key}: {val}')
- log_lines.append('------- config parameters end --------')
- self.tensorboard_writer.add_text("Hyper_parameters", config_string_markup)
- self._write_to_log_file(log_lines)
- @multi_process_safe
- def add_scalar(self, tag: str, scalar_value: float, global_step: int = None):
- self.tensorboard_writer.add_scalar(tag=tag.lower().replace(' ', '_'), scalar_value=scalar_value, global_step=global_step)
- @multi_process_safe
- def add_scalars(self, tag_scalar_dict: dict, global_step: int = None):
- """
- add multiple scalars.
- Unlike Tensorboard implementation, this does not add all scalars with a main tag (all scalars to the same chart).
- Instead, scalars are added to tensorboard like in add_scalar and are written in log together.
- """
- for tag, value in tag_scalar_dict.items():
- self.tensorboard_writer.add_scalar(tag=tag.lower().replace(' ', '_'), scalar_value=value, global_step=global_step)
- self.tensorboard_writer.flush()
- # WRITE THE EPOCH RESULTS TO LOG FILE
- log_line = f'\nEpoch ({global_step}/{self.max_global_steps}) - '
- for tag, value in tag_scalar_dict.items():
- if isinstance(value, torch.Tensor):
- value = value.item()
- log_line += f'{tag.replace(" ", "_")}: {value}\t'
- self._write_to_log_file([log_line])
- @multi_process_safe
- def add_image(self, tag: str, image: Union[torch.Tensor, np.array, Image.Image], data_format='CHW', global_step: int = None):
- self.tensorboard_writer.add_image(tag=tag, image=image, dataformats=data_format, global_step=global_step)
- @multi_process_safe
- def add_images(self, tag: str, images: Union[torch.Tensor, np.array], data_format='NCHW', global_step: int = None):
- """
- Add multiple images to SGLogger.
- Typically, this function will add a set of images to tensorboard, save them to disk or add it to experiment management framework.
- :param tag: Data identifier
- :param images: images to be added. The values should lie in [0, 255] for type uint8 or [0, 1] for type float.
- :param data_format: Image data format specification of the form NCHW, NHWC, CHW, HWC, HW, WH, etc.
- :param global_step: Global step value to record
- """
- self.tensorboard_writer.add_images(tag=tag, img_tensor=images, dataformats=data_format, global_step=global_step)
- @multi_process_safe
- def add_video(self, tag: str, video: Union[torch.Tensor, np.array], global_step: int = None):
- """
- Add a single video to SGLogger.
- Typically, this function will add a video to tensorboard, save it to disk or add it to experiment management framework.
- :param tag: Data identifier
- :param video: the video to add. shape (N,T,C,H,W) or (T,C,H,W). The values should lie in [0, 255] for type uint8 or [0, 1] for type float.
- :param global_step: Global step value to record
- """
- if video.ndim < 5:
- video = video[None, ]
- self.tensorboard_writer.add_video(tag=tag, video=video, global_step=global_step)
- @multi_process_safe
- def add_histogram(self, tag: str, values: Union[torch.Tensor, np.array], bins: str, global_step: int = None):
- self.tensorboard_writer.add_histogram(tag=tag, values=values, bins=bins, global_step=global_step)
- @multi_process_safe
- def add_model_graph(self, tag: str, model: torch.nn.Module, dummy_input: torch.Tensor):
- """
- Add a pytorch model graph to the SGLogger.
- Only the model structure/architecture will be preserved and collected, NOT the model weights.
- :param tag: Data identifier
- :param model: the model to be added
- :param dummy_input: an input to be used for a forward call on the model
- """
- self.tensorboard_writer.add_graph(model=model, input_to_model=dummy_input)
- @multi_process_safe
- def add_text(self, tag: str, text_string: str, global_step: int = None):
- self.tensorboard_writer.add_text(tag=tag, text_string=text_string, global_step=global_step)
- @multi_process_safe
- def add_figure(self, tag: str, figure: plt.figure, global_step: int = None):
- """
- Add a text to SGLogger.
- Typically, this function will add a figure to tensorboard or add it to experiment management framework.
- :param tag: Data identifier
- :param figure: the figure to add
- :param global_step: Global step value to record
- """
- self.tensorboard_writer.add_figure(tag=tag, figure=figure, global_step=global_step)
- @multi_process_safe
- def upload(self):
- if self.save_tensorboard_remote:
- self.model_checkpoints_data_interface.save_remote_tensorboard_event_files(self.experiment_name, self._local_dir)
- if self.save_logs_remote:
- log_file_name = self.log_file_path.split('/')[-1]
- self.model_checkpoints_data_interface.save_remote_checkpoints_file(self.experiment_name, self._local_dir, log_file_name)
- @multi_process_safe
- def flush(self):
- self.tensorboard_writer.flush()
- @multi_process_safe
- def close(self):
- self.tensorboard_writer.close()
- if self.tensor_board_process is not None:
- try:
- logger.info('[CLEANUP] - Stopping tensorboard process')
- process = psutil.Process(self.tensor_board_process.pid)
- process.send_signal(signal.SIGTERM)
- logger.info('[CLEANUP] - Successfully stopped tensorboard process')
- except Exception as ex:
- logger.info('[CLEANUP] - Could not stop tensorboard process properly: ' + str(ex))
- @multi_process_safe
- def add_checkpoint(self, tag: str, state_dict: dict, global_step: int = None):
- name = f'ckpt_{global_step}.pth' if tag is None else tag
- if not name.endswith('.pth'):
- name += '.pth'
- path = os.path.join(self._local_dir, name)
- torch.save(state_dict, path)
- if self.save_checkpoints_remote:
- self.model_checkpoints_data_interface.save_remote_checkpoints_file(self.experiment_name, self._local_dir, name)
- def add(self, tag: str, obj: Any, global_step: int = None):
- pass
- def local_dir(self) -> str:
- return self._local_dir
|