1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
|
- import os
- import numpy as np
- import torch
- import torchvision
- import torchvision.datasets as datasets
- import torchvision.transforms as transforms
- from super_gradients.common.abstractions.abstract_logger import get_logger
- from torch.utils.data.distributed import DistributedSampler
- from super_gradients.training.datasets import datasets_utils, DataAugmentation
- from super_gradients.training.datasets.data_augmentation import Lighting, RandomErase
- from super_gradients.training.datasets.datasets_utils import RandomResizedCropAndInterpolation
- from super_gradients.training.datasets.detection_datasets import COCODetectionDataSet, PascalVOC2012DetectionDataSet
- from super_gradients.training.datasets.segmentation_datasets import PascalVOC2012SegmentationDataSet, \
- PascalAUG2012SegmentationDataSet, CoCoSegmentationDataSet
- from super_gradients.training import utils as core_utils
- from super_gradients.common import DatasetDataInterface
- from super_gradients.common.environment import AWS_ENV_NAME
- from super_gradients.training.utils.detection_utils import base_detection_collate_fn
- from super_gradients.training.datasets.mixup import CollateMixup
- from super_gradients.training.exceptions.dataset_exceptions import IllegalDatasetParameterException
- from super_gradients. training.datasets.segmentation_datasets.cityscape_segmentation import CityscapesDataset
- default_dataset_params = {"batch_size": 64, "val_batch_size": 200, "test_batch_size": 200, "dataset_dir": "./data/",
- "s3_link": None}
- LIBRARY_DATASETS = {
- "cifar10": {'class': datasets.CIFAR10, 'mean': (0.4914, 0.4822, 0.4465), 'std': (0.2023, 0.1994, 0.2010)},
- "cifar100": {'class': datasets.CIFAR100, 'mean': (0.5071, 0.4865, 0.4409), 'std': (0.2673, 0.2564, 0.2762)},
- "SVHN": {'class': datasets.SVHN, 'mean': None, 'std': None}
- }
- logger = get_logger(__name__)
- class DatasetInterface:
- """
- DatasetInterface - This class manages all of the "communiation" the Model has with the Data Sets
- """
- def __init__(self, dataset_params={}, train_loader=None, val_loader=None, test_loader=None, classes=None):
- """
- @param train_loader: torch.utils.data.Dataloader (optional) dataloader for training.
- @param test_loader: torch.utils.data.Dataloader (optional) dataloader for testing.
- @param classes: list of classes.
- Note: the above parameters will be discarded in case dataset_params is passed.
- @param dataset_params:
- - `batch_size` : int (default=64)
- Number of examples per batch for training. Large batch sizes are recommended.
- - `val_batch_size` : int (default=200)
- Number of examples per batch for validation. Large batch sizes are recommended.
- - `dataset_dir` : str (default="./data/")
- Directory location for the data. Data will be downloaded to this directory when getting it from a
- remote url.
- - `s3_link` : str (default=None)
- remote s3 link to download the data (optional).
- """
- self.dataset_params = core_utils.HpmStruct(**default_dataset_params)
- self.dataset_params.override(**dataset_params)
- self.trainset, self.valset, self.testset = None, None, None
- self.train_loader, self.val_loader, self.test_loader = train_loader, val_loader, test_loader
- self.classes = classes
- self.batch_size_factor = 1
- if self.dataset_params.s3_link is not None:
- self.download_from_cloud()
- def download_from_cloud(self):
- if self.dataset_params.s3_link is not None:
- env_name = AWS_ENV_NAME
- downloader = DatasetDataInterface(env=env_name)
- target_dir = self.dataset_params.dataset_dir
- if not os.path.exists(target_dir):
- os.mkdir(target_dir)
- downloader.load_remote_dataset_file(self.dataset_params.s3_link, target_dir)
- def build_data_loaders(self, batch_size_factor=1, num_workers=8, train_batch_size=None, val_batch_size=None,
- test_batch_size=None, distributed_sampler: bool = False):
- """
- define train, val (and optionally test) loaders. The method deals separately with distributed training and standard
- (non distributed, or parallel training). In the case of distributed training we need to rely on distributed
- samplers.
- :param batch_size_factor: int - factor to multiply the batch size (usually for multi gpu)
- :param num_workers: int - number of workers (parallel processes) for dataloaders
- :param train_batch_size: int - batch size for train loader, if None will be taken from dataset_params
- :param val_batch_size: int - batch size for val loader, if None will be taken from dataset_params
- :param distributed_sampler: boolean flag for distributed training mode
- :return: train_loader, val_loader, classes: list of classes
- """
- # CHANGE THE BATCH SIZE ACCORDING TO THE NUMBER OF DEVICES - ONLY IN NON-DISTRIBUED TRAINING MODE
- # IN DISTRIBUTED MODE WE NEED DISTRIBUTED SAMPLERS
- # NO SHUFFLE IN DISTRIBUTED TRAINING
- if distributed_sampler:
- self.batch_size_factor = 1
- train_sampler = DistributedSampler(self.trainset)
- val_sampler = DistributedSampler(self.valset)
- test_sampler = DistributedSampler(self.testset) if self.testset is not None else None
- train_shuffle = False
- else:
- self.batch_size_factor = batch_size_factor
- train_sampler = None
- val_sampler = None
- test_sampler = None
- train_shuffle = True
- if train_batch_size is None:
- train_batch_size = self.dataset_params.batch_size * self.batch_size_factor
- if val_batch_size is None:
- val_batch_size = self.dataset_params.val_batch_size * self.batch_size_factor
- if test_batch_size is None:
- test_batch_size = self.dataset_params.test_batch_size * self.batch_size_factor
- train_loader_drop_last = core_utils.get_param(self.dataset_params, 'train_loader_drop_last', default_val=False)
- cutmix = core_utils.get_param(self.dataset_params, 'cutmix', False)
- cutmix_params = core_utils.get_param(self.dataset_params, 'cutmix_params')
- # WRAPPING collate_fn
- train_collate_fn = core_utils.get_param(self.trainset, 'collate_fn')
- val_collate_fn = core_utils.get_param(self.valset, 'collate_fn')
- test_collate_fn = core_utils.get_param(self.testset, 'collate_fn')
- if cutmix and train_collate_fn is not None:
- raise IllegalDatasetParameterException("cutmix and collate function cannot be used together")
- if cutmix:
- # FIXME - cutmix should be available only in classification dataset. once we make sure all classification
- # datasets inherit from the same super class, we should move cutmix code to that class
- logger.warning("Cutmix/mixup was enabled. This feature is currently supported only "
- "for classification datasets.")
- train_collate_fn = CollateMixup(**cutmix_params)
- # FIXME - UNDERSTAND IF THE num_replicas VARIBALE IS NEEDED
- # train_sampler = DistributedSampler(self.trainset,
- # num_replicas=distributed_gpus_num) if distributed_sampler else None
- # val_sampler = DistributedSampler(self.valset,
- # num_replicas=distributed_gpus_num) if distributed_sampler else None
- self.train_loader = torch.utils.data.DataLoader(self.trainset,
- batch_size=train_batch_size,
- shuffle=train_shuffle,
- num_workers=num_workers,
- pin_memory=True,
- sampler=train_sampler,
- collate_fn=train_collate_fn,
- drop_last=train_loader_drop_last)
- self.val_loader = torch.utils.data.DataLoader(self.valset,
- batch_size=val_batch_size,
- shuffle=False,
- num_workers=num_workers,
- pin_memory=True,
- sampler=val_sampler,
- collate_fn=val_collate_fn)
- if self.testset is not None:
- self.test_loader = torch.utils.data.DataLoader(self.testset,
- batch_size=test_batch_size,
- shuffle=False,
- num_workers=num_workers,
- pin_memory=True,
- sampler=test_sampler,
- collate_fn=test_collate_fn)
- self.classes = self.trainset.classes
- def get_data_loaders(self, **kwargs):
- """
- Get self.train_loader, self.test_loader, self.classes.
- If the data loaders haven't been initialized yet, build them first.
- :param kwargs: kwargs are passed to build_data_loaders.
- """
- if self.train_loader is None and self.val_loader is None:
- self.build_data_loaders(**kwargs)
- return self.train_loader, self.val_loader, self.test_loader, self.classes
- def get_val_sample(self, num_samples=1):
- if num_samples > len(self.valset):
- raise Exception("Tried to load more samples than val-set size")
- if num_samples == 1:
- return self.valset[0]
- else:
- return self.valset[0:num_samples]
- def get_dataset_params(self):
- return self.dataset_params
- def print_dataset_details(self):
- logger.info("{} training samples, {} val samples, {} classes".format(len(self.trainset), len(self.valset),
- len(self.trainset.classes)))
- class ExternalDatasetInterface(DatasetInterface):
- def __init__(self, train_loader, val_loader, num_classes, dataset_params={}):
- """
- ExternalDatasetInterface - A wrapper for external dataset interface that gets dataloaders from keras/TF
- and converts them to Torch-like dataloaders that return torch.Tensors after
- optional collate_fn while maintaining the same interface (connect_dataset_interface etc.)
- :train_loader: The external train_loader
- :val_loader: The external val_loader
- :num_classes: The number of classes
- :dataset_params The dict that includes the batch_size and/or the collate_fn
- :return: DataLoaders that generate torch.Tensors batches after collate_fn
- """
- super().__init__(dataset_params)
- self.train_loader = train_loader
- self.val_loader = val_loader
- self.classes = num_classes
- def get_data_loaders(self, batch_size_factor: int = 1, num_workers: int = 8, train_batch_size: int = None,
- val_batch_size: int = None, distributed_sampler: bool = False):
- # CHANGE THE BATCH SIZE ACCORDING TO THE NUMBER OF DEVICES - ONLY IN NON-DISTRIBUED TRAINING MODE
- # IN DISTRIBUTED MODE WE NEED DISTRIBUTED SAMPLERS
- # NO SHUFFLE IN DISTRIBUTED TRAINING
- if distributed_sampler:
- self.batch_size_factor = 1
- train_sampler = DistributedSampler(self.trainset, shuffle=True)
- val_sampler = DistributedSampler(self.valset)
- train_shuffle = False
- else:
- self.batch_size_factor = batch_size_factor
- train_sampler = None
- val_sampler = None
- train_shuffle = True
- if train_batch_size is None:
- train_batch_size = self.dataset_params.batch_size * self.batch_size_factor
- if val_batch_size is None:
- val_batch_size = self.dataset_params.val_batch_size * self.batch_size_factor
- train_loader_drop_last = core_utils.get_param(self.dataset_params, 'train_loader_drop_last', default_val=False)
- # WRAPPING collate_fn
- train_collate_fn = core_utils.get_param(self.dataset_params, 'train_collate_fn')
- val_collate_fn = core_utils.get_param(self.dataset_params, 'val_collate_fn')
- # FIXME - UNDERSTAND IF THE num_replicas VARIBALE IS NEEDED
- # train_sampler = DistributedSampler(self.trainset,
- # num_replicas=distributed_gpus_num) if distributed_sampler else None
- # val_sampler = DistributedSampler(self.valset,
- # num_replicas=distributed_gpus_num) if distributed_sampler else None
- self.torch_train_loader = torch.utils.data.DataLoader(self.train_loader,
- batch_size=train_batch_size,
- shuffle=train_shuffle,
- num_workers=num_workers,
- pin_memory=True,
- sampler=train_sampler,
- collate_fn=train_collate_fn,
- drop_last=train_loader_drop_last)
- self.torch_val_loader = torch.utils.data.DataLoader(self.val_loader,
- batch_size=val_batch_size,
- shuffle=False,
- num_workers=num_workers,
- pin_memory=True,
- sampler=val_sampler,
- collate_fn=val_collate_fn)
- return self.torch_train_loader, self.torch_val_loader, None, self.classes
- class LibraryDatasetInterface(DatasetInterface):
- def __init__(self, name="cifar10", dataset_params={}, to_cutout=False):
- super(LibraryDatasetInterface, self).__init__(dataset_params)
- self.dataset_name = name
- if self.dataset_name not in LIBRARY_DATASETS.keys():
- raise Exception('dataset not found')
- self.lib_dataset_params = LIBRARY_DATASETS[self.dataset_name]
- if self.lib_dataset_params['mean'] is None:
- trainset = torchvision.datasets.SVHN(root=self.dataset_params.dataset_dir, split='train', download=True,
- transform=transforms.ToTensor())
- self.lib_dataset_params['mean'], self.lib_dataset_params['std'] = datasets_utils.get_mean_and_std(trainset)
- crop_size = core_utils.get_param(self.dataset_params, 'crop_size', default_val=32)
- if to_cutout:
- transform_train = transforms.Compose([
- transforms.RandomCrop(crop_size, padding=4),
- transforms.RandomHorizontalFlip(),
- DataAugmentation.normalize(self.lib_dataset_params['mean'], self.lib_dataset_params['std']),
- DataAugmentation.cutout(16),
- DataAugmentation.to_tensor()
- ])
- else:
- transform_train = transforms.Compose([
- transforms.RandomCrop(crop_size, padding=4),
- transforms.RandomHorizontalFlip(),
- transforms.ToTensor(),
- transforms.Normalize(self.lib_dataset_params['mean'], self.lib_dataset_params['std']),
- ])
- transform_val = transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize(self.lib_dataset_params['mean'], self.lib_dataset_params['std']),
- ])
- dataset_cls = self.lib_dataset_params["class"]
- self.trainset = dataset_cls(root=self.dataset_params.dataset_dir, train=True, download=True,
- transform=transform_train)
- self.valset = dataset_cls(root=self.dataset_params.dataset_dir, train=False, download=True,
- transform=transform_val)
- class Cifar10DatasetInterface(LibraryDatasetInterface):
- def __init__(self, dataset_params={}):
- super(Cifar10DatasetInterface, self).__init__(name="cifar10", dataset_params=dataset_params)
- class Cifar100DatasetInterface(LibraryDatasetInterface):
- def __init__(self, dataset_params={}):
- super(Cifar100DatasetInterface, self).__init__(name="cifar100", dataset_params=dataset_params)
- class TestDatasetInterface(DatasetInterface):
- def __init__(self, trainset, dataset_params={}, classes=None):
- super(TestDatasetInterface, self).__init__(dataset_params)
- self.trainset = trainset
- self.valset = self.trainset
- self.testset = self.trainset
- self.classes = classes
- def get_data_loaders(self, batch_size_factor=1, num_workers=8, train_batch_size=None, val_batch_size=None,
- distributed_sampler=False):
- self.trainset.classes = [0, 1, 2, 3, 4] if self.classes is None else self.classes
- return super().get_data_loaders(batch_size_factor=batch_size_factor,
- num_workers=num_workers,
- train_batch_size=train_batch_size,
- val_batch_size=val_batch_size,
- distributed_sampler=distributed_sampler)
- class ClassificationTestDatasetInterface(TestDatasetInterface):
- def __init__(self, dataset_params={}, image_size=32, batch_size=5, classes=None):
- trainset = torch.utils.data.TensorDataset(torch.Tensor(np.zeros((batch_size, 3, image_size, image_size))),
- torch.LongTensor(np.zeros((batch_size))))
- super(ClassificationTestDatasetInterface, self).__init__(trainset=trainset, dataset_params=dataset_params, classes=classes)
- class SegmentationTestDatasetInterface(TestDatasetInterface):
- def __init__(self, dataset_params={}, image_size=512, batch_size=4):
- trainset = torch.utils.data.TensorDataset(torch.Tensor(np.zeros((batch_size, 3, image_size, image_size))),
- torch.LongTensor(np.zeros((batch_size, image_size, image_size))))
- super(SegmentationTestDatasetInterface, self).__init__(trainset=trainset, dataset_params=dataset_params)
- class DetectionTestDatasetInterface(TestDatasetInterface):
- def __init__(self, dataset_params={}, image_size=320, batch_size=4):
- trainset = torch.utils.data.TensorDataset(torch.Tensor(np.zeros((batch_size, 3, image_size, image_size))),
- torch.Tensor(np.zeros((batch_size, 6))))
- super(DetectionTestDatasetInterface, self).__init__(trainset=trainset, dataset_params=dataset_params)
- class TestYoloDetectionDatasetInterface(DatasetInterface):
- """
- note: the output size is (batch_size, 6) in the test while in real training
- the size of axis 0 can vary (the number of bounding boxes)
- """
- def __init__(self, dataset_params={}, input_dims=(3, 32, 32), batch_size=5):
- super().__init__(dataset_params)
- self.trainset = torch.utils.data.TensorDataset(torch.ones((batch_size, *input_dims)),
- torch.ones((batch_size, 6)))
- self.trainset.classes = [0, 1, 2, 3, 4]
- self.valset = self.trainset
- class ImageNetDatasetInterface(DatasetInterface):
- def __init__(self, dataset_params={}, data_dir="/data/Imagenet"):
- super(ImageNetDatasetInterface, self).__init__(dataset_params)
- data_dir = dataset_params['dataset_dir'] if 'dataset_dir' in dataset_params.keys() else data_dir
- traindir = os.path.join(os.path.abspath(data_dir), 'train')
- valdir = os.path.join(data_dir, 'val')
- img_mean = [0.485, 0.456, 0.406]
- img_std = [0.229, 0.224, 0.225]
- normalize = transforms.Normalize(mean=img_mean,
- std=img_std)
- crop_size = core_utils.get_param(self.dataset_params, 'crop_size', default_val=224)
- resize_size = core_utils.get_param(self.dataset_params, 'resize_size', default_val=256)
- color_jitter = core_utils.get_param(self.dataset_params, 'color_jitter', default_val=0.0)
- imagenet_pca_aug = core_utils.get_param(self.dataset_params, 'imagenet_pca_aug', default_val=0.0)
- train_interpolation = core_utils.get_param(self.dataset_params, 'train_interpolation', default_val='default')
- rand_augment_config_string = core_utils.get_param(self.dataset_params, 'rand_augment_config_string',
- default_val=None)
- color_jitter = (float(color_jitter),) * 3 if isinstance(color_jitter, float) else color_jitter
- assert len(color_jitter) in (3, 4), "color_jitter must be a scalar or tuple of len 3 or 4"
- color_augmentation = datasets_utils.get_color_augmentation(rand_augment_config_string, color_jitter,
- crop_size=crop_size, img_mean=img_mean)
- train_transformation_list = [
- RandomResizedCropAndInterpolation(crop_size, interpolation=train_interpolation),
- transforms.RandomHorizontalFlip(),
- color_augmentation,
- transforms.ToTensor(),
- Lighting(imagenet_pca_aug),
- normalize]
- rndm_erase_prob = core_utils.get_param(self.dataset_params, 'random_erase_prob', default_val=0.)
- if rndm_erase_prob:
- train_transformation_list.append(RandomErase(rndm_erase_prob, self.dataset_params.random_erase_value))
- self.trainset = datasets.ImageFolder(traindir, transforms.Compose(train_transformation_list))
- self.valset = datasets.ImageFolder(valdir, transforms.Compose([
- transforms.Resize(resize_size),
- transforms.CenterCrop(crop_size),
- transforms.ToTensor(),
- normalize,
- ]))
- class TinyImageNetDatasetInterface(DatasetInterface):
- def __init__(self, dataset_params={}, data_dir="/data/TinyImagenet"):
- super(TinyImageNetDatasetInterface, self).__init__(dataset_params)
- data_dir = dataset_params['dataset_dir'] if 'dataset_dir' in dataset_params.keys() else data_dir
- traindir = os.path.join(os.path.abspath(data_dir), 'train')
- valdir = os.path.join(data_dir, 'val')
- normalize = transforms.Normalize(mean=[0.4802, 0.4481, 0.3975],
- std=[0.2770, 0.2691, 0.2821])
- crop_size = core_utils.get_param(self.dataset_params, 'crop_size', default_val=56)
- resize_size = core_utils.get_param(self.dataset_params, 'resize_size', default_val=64)
- self.trainset = datasets.ImageFolder(
- traindir,
- transforms.Compose([
- transforms.RandomResizedCrop(crop_size),
- transforms.RandomHorizontalFlip(),
- transforms.ToTensor(),
- normalize,
- ]))
- self.valset = datasets.ImageFolder(valdir, transforms.Compose([
- transforms.Resize(resize_size),
- transforms.CenterCrop(crop_size),
- transforms.ToTensor(),
- normalize,
- ]))
- class ClassificationDatasetInterface(DatasetInterface):
- def __init__(self, normalization_mean=(0, 0, 0), normalization_std=(1, 1, 1), resolution=64,
- dataset_params={}):
- super(ClassificationDatasetInterface, self).__init__(dataset_params)
- data_dir = self.dataset_params.dataset_dir
- traindir = os.path.join(os.path.abspath(data_dir), 'train')
- valdir = os.path.join(data_dir, 'val')
- normalize = transforms.Normalize(mean=normalization_mean,
- std=normalization_std)
- self.trainset = datasets.ImageFolder(
- traindir,
- transforms.Compose([
- transforms.RandomResizedCrop(resolution),
- transforms.RandomHorizontalFlip(),
- transforms.ToTensor(),
- normalize,
- ]))
- self.valset = datasets.ImageFolder(valdir, transforms.Compose([
- transforms.Resize(int(resolution * 1.15)),
- transforms.CenterCrop(resolution),
- transforms.ToTensor(),
- normalize,
- ]))
- self.data_dir = data_dir
- self.normalization_mean = normalization_mean
- self.normalization_std = normalization_std
- class PascalVOC2012DetectionDataSetInterface(DatasetInterface):
- def __init__(self, dataset_params=None, cache_labels=False, cache_images=False):
- if dataset_params is None:
- dataset_params = dict()
- super().__init__(dataset_params=dataset_params)
- self.root_dir = core_utils.get_param(dataset_params, 'dataset_dir', '/data/pascal_voc_2012/VOCdevkit/VOC2012/')
- default_hyper_params = {
- 'hsv_h': 0.0138, # IMAGE HSV-Hue AUGMENTATION (fraction)
- 'hsv_s': 0.664, # IMAGE HSV-Saturation AUGMENTATION (fraction)
- 'hsv_v': 0.464, # IMAGE HSV-Value AUGMENTATION (fraction)
- 'degrees': 0.373, # IMAGE ROTATION (+/- deg)
- 'translate': 0.245, # IMAGE TRANSLATION (+/- fraction)
- 'scale': 0.898, # IMAGE SCALE (+/- gain)
- 'shear': 0.602} # IMAGE SHEAR (+/- deg)
- self.pascal_voc_dataset_hyper_params = core_utils.get_param(self.dataset_params, 'dataset_hyper_param',
- default_val=default_hyper_params)
- train_sample_method = core_utils.get_param(self.dataset_params, 'train_sample_loading_method',
- default_val='mosaic')
- val_sample_method = core_utils.get_param(self.dataset_params, 'val_sample_loading_method',
- default_val='rectangular')
- train_collate_fn = core_utils.get_param(self.dataset_params, 'train_collate_fn')
- val_collate_fn = core_utils.get_param(self.dataset_params, 'val_collate_fn')
- self.trainset = PascalVOC2012DetectionDataSet(root=self.root_dir,
- list_file='ImageSets/Main/train.txt',
- samples_sub_directory='JPEGImages',
- targets_sub_directory='Annotations',
- dataset_hyper_params=self.pascal_voc_dataset_hyper_params,
- batch_size=self.dataset_params.batch_size,
- img_size=self.dataset_params.image_size,
- collate_fn=train_collate_fn,
- augment=True,
- sample_loading_method=train_sample_method,
- cache_labels=cache_labels,
- cache_images=cache_images)
- self.valset = PascalVOC2012DetectionDataSet(root=self.root_dir,
- list_file='ImageSets/Main/val.txt',
- samples_sub_directory='JPEGImages',
- targets_sub_directory='Annotations',
- dataset_hyper_params=self.pascal_voc_dataset_hyper_params,
- batch_size=self.dataset_params.val_batch_size,
- img_size=self.dataset_params.image_size,
- collate_fn=val_collate_fn,
- sample_loading_method=val_sample_method,
- cache_labels=cache_labels,
- cache_images=cache_images)
- self.classes = self.trainset.classes
- class PascalVOC2012SegmentationDataSetInterface(DatasetInterface):
- def __init__(self, dataset_params=None, cache_labels=False, cache_images=False):
- if dataset_params is None:
- dataset_params = dict()
- super().__init__(dataset_params=dataset_params)
- self.root_dir = dataset_params['dataset_dir'] if 'dataset_dir' in dataset_params.keys() \
- else '/data/pascal_voc_2012/VOCdevkit/VOC2012/'
- self.trainset = PascalVOC2012SegmentationDataSet(root=self.root_dir,
- list_file='ImageSets/Segmentation/train.txt',
- samples_sub_directory='JPEGImages',
- targets_sub_directory='SegmentationClass', augment=True,
- dataset_hyper_params=dataset_params, cache_labels=cache_labels,
- cache_images=cache_images)
- self.valset = PascalVOC2012SegmentationDataSet(root=self.root_dir,
- list_file='ImageSets/Segmentation/val.txt',
- samples_sub_directory='JPEGImages',
- targets_sub_directory='SegmentationClass', augment=True,
- dataset_hyper_params=dataset_params, cache_labels=cache_labels,
- cache_images=cache_images)
- self.classes = self.trainset.classes
- class PascalAUG2012SegmentationDataSetInterface(DatasetInterface):
- def __init__(self, dataset_params=None, cache_labels=False, cache_images=False):
- if dataset_params is None:
- dataset_params = dict()
- super().__init__(dataset_params=dataset_params)
- self.root_dir = dataset_params['dataset_dir'] if 'dataset_dir' in dataset_params.keys() \
- else '/data/pascal_voc_2012/VOCaug/dataset/'
- self.trainset = PascalAUG2012SegmentationDataSet(
- root=self.root_dir,
- list_file='trainval.txt',
- samples_sub_directory='img',
- targets_sub_directory='cls', augment=True,
- dataset_hyper_params=dataset_params, cache_labels=cache_labels,
- cache_images=cache_images)
- self.valset = PascalAUG2012SegmentationDataSet(
- root=self.root_dir,
- list_file='val.txt',
- samples_sub_directory='img',
- targets_sub_directory='cls', augment=False,
- dataset_hyper_params=dataset_params, cache_labels=cache_labels,
- cache_images=cache_images)
- self.classes = self.trainset.classes
- class CoCoDataSetInterfaceBase(DatasetInterface):
- def __init__(self, dataset_params=None):
- if dataset_params is None:
- dataset_params = dict()
- super().__init__(dataset_params=dataset_params)
- self.root_dir = dataset_params['dataset_dir'] if 'dataset_dir' in dataset_params.keys() else '/data/coco/'
- class CoCoDetectionDatasetInterface(CoCoDataSetInterfaceBase):
- def __init__(self, dataset_params=None, cache_labels=False, cache_images=False, train_list_file='train2017.txt',
- val_list_file='val2017.txt'):
- super().__init__(dataset_params=dataset_params)
- default_hyper_params = {
- 'hsv_h': 0.0138, # IMAGE HSV-Hue AUGMENTATION (fraction)
- 'hsv_s': 0.678, # IMAGE HSV-Saturation AUGMENTATION (fraction)
- 'hsv_v': 0.36, # IMAGE HSV-Value AUGMENTATION (fraction)
- 'degrees': 1.98, # IMAGE ROTATION (+/- deg)
- 'translate': 0.05, # IMAGE TRANSLATION (+/- fraction)
- 'scale': 0.05, # IMAGE SCALE (+/- gain)
- 'shear': 0.641} # IMAGE SHEAR (+/- deg)
- self.coco_dataset_hyper_params = core_utils.get_param(self.dataset_params, 'dataset_hyper_param',
- default_val=default_hyper_params)
- train_sample_method = core_utils.get_param(self.dataset_params, 'train_sample_loading_method',
- default_val='mosaic')
- val_sample_method = core_utils.get_param(self.dataset_params, 'val_sample_loading_method',
- default_val='rectangular')
- train_collate_fn = core_utils.get_param(self.dataset_params, 'train_collate_fn', base_detection_collate_fn)
- val_collate_fn = core_utils.get_param(self.dataset_params, 'val_collate_fn', base_detection_collate_fn)
- image_size = core_utils.get_param(self.dataset_params, 'image_size')
- train_image_size = core_utils.get_param(self.dataset_params, 'train_image_size')
- val_image_size = core_utils.get_param(self.dataset_params, 'val_image_size')
- labels_offset = core_utils.get_param(self.dataset_params, 'labels_offset', default_val=0)
- class_inclusion_list = core_utils.get_param(self.dataset_params, 'class_inclusion_list')
- if image_size is None:
- assert train_image_size is not None and val_image_size is not None, 'Please provide either only image_size or ' \
- 'both train_image_size AND val_image_size'
- else:
- assert train_image_size is None and val_image_size is None, 'Please provide either only image_size or ' \
- 'both train_image_size AND val_image_size'
- train_image_size = image_size
- val_image_size = image_size
- self.trainset = COCODetectionDataSet(root=self.root_dir, list_file=train_list_file,
- dataset_hyper_params=self.coco_dataset_hyper_params,
- batch_size=self.dataset_params.batch_size,
- img_size=train_image_size,
- collate_fn=train_collate_fn,
- augment=True,
- sample_loading_method=train_sample_method,
- cache_labels=cache_labels,
- cache_images=cache_images,
- labels_offset=labels_offset,
- class_inclusion_list=class_inclusion_list)
- self.valset = COCODetectionDataSet(root=self.root_dir, list_file=val_list_file,
- dataset_hyper_params=self.coco_dataset_hyper_params,
- batch_size=self.dataset_params.val_batch_size,
- img_size=val_image_size,
- collate_fn=val_collate_fn,
- sample_loading_method=val_sample_method,
- cache_labels=cache_labels,
- cache_images=cache_images,
- labels_offset=labels_offset,
- class_inclusion_list=class_inclusion_list)
- self.coco_classes = self.trainset.classes
- class CoCoSegmentationDatasetInterface(CoCoDataSetInterfaceBase):
- def __init__(self, dataset_params=None, cache_labels: bool = False, cache_images: bool = False,
- dataset_classes_inclusion_tuples_list: list = None):
- super().__init__(dataset_params=dataset_params)
- self.trainset = CoCoSegmentationDataSet(
- root=self.root_dir,
- list_file='instances_train2017.json',
- samples_sub_directory='images/train2017',
- targets_sub_directory='annotations', augment=True,
- dataset_hyper_params=dataset_params,
- cache_labels=cache_labels,
- cache_images=cache_images,
- dataset_classes_inclusion_tuples_list=dataset_classes_inclusion_tuples_list)
- self.valset = CoCoSegmentationDataSet(
- root=self.root_dir,
- list_file='instances_val2017.json',
- samples_sub_directory='images/val2017',
- targets_sub_directory='annotations', augment=False,
- dataset_hyper_params=dataset_params,
- cache_labels=cache_labels,
- cache_images=cache_images,
- dataset_classes_inclusion_tuples_list=dataset_classes_inclusion_tuples_list)
- self.coco_classes = self.trainset.classes
- class CoCo2014DetectionDatasetInterface(CoCoDetectionDatasetInterface):
- def __init__(self, dataset_params=None, cache_labels=False, cache_images=False, train_list_file='train2014.txt',
- val_list_file='val2014.txt'):
- dataset_params['dataset_dir'] = core_utils.get_param(dataset_params, 'dataset_dir', '/data/coco2014/')
- super().__init__(dataset_params=dataset_params, cache_labels=cache_labels, cache_images=cache_images,
- train_list_file=train_list_file, val_list_file=val_list_file)
- class CityscapesDatasetInterface(DatasetInterface):
- def __init__(self, dataset_params=None, cache_labels: bool = False, cache_images: bool = False):
- super().__init__(dataset_params=dataset_params)
- root_dir = core_utils.get_param(dataset_params, "dataset_dir", "/data/cityscapes")
- img_size = core_utils.get_param(dataset_params, "img_size", 1024)
- crop_size = core_utils.get_param(dataset_params, "crop_size", 512)
- image_mask_transforms = core_utils.get_param(dataset_params, "image_mask_transforms")
- image_mask_transforms_aug = core_utils.get_param(dataset_params, "image_mask_transforms_aug")
- self.trainset = CityscapesDataset(
- root_dir=root_dir,
- list_file='lists/train.lst',
- labels_csv_path="lists/labels.csv",
- img_size=img_size,
- crop_size=crop_size,
- augment=True,
- dataset_hyper_params=dataset_params,
- cache_labels=cache_labels,
- cache_images=cache_images,
- image_mask_transforms=image_mask_transforms,
- image_mask_transforms_aug=image_mask_transforms_aug)
- self.valset = CityscapesDataset(
- root_dir=root_dir,
- list_file='lists/val.lst',
- labels_csv_path="lists/labels.csv",
- img_size=img_size,
- crop_size=crop_size,
- augment=False,
- dataset_hyper_params=dataset_params,
- cache_labels=cache_labels,
- cache_images=cache_images,
- image_mask_transforms=image_mask_transforms)
- self.classes = self.trainset.classes
|