Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#879 fix documentation after version

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-000_fix_readme
3 changed files with 45 additions and 40 deletions
  1. 13
    12
      README.md
  2. 16
    13
      documentation/source/model_zoo.md
  3. 16
    15
      documentation/source/welcome.md
@@ -120,26 +120,27 @@ ________________________________________________________________________________
 pip install super-gradients
 pip install super-gradients
 ```
 ```
 
 
-## What's New - Version 3.0.8
+## What's New - Version 3.1.0 (May 3rd)
 __________________________________________________________________________________________________________
 __________________________________________________________________________________________________________
-*  [QAT&PTQ](https://bit.ly/41hC8uI)
-* [Pose estimation](http://bit.ly/3o0xHq2)
-* [New documentation](http://bit.ly/3KYVCiJ)
-* [New semantic segmentation dataset - Mapillary Vistas Dataset](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/datasets/segmentation_datasets/mapillary_dataset.py)
-*  Lion optimizer
-* PP-YoloE pre-trained - new pre-trained [checkpoints](https://bit.ly/41dkt89) and [recipes](http://bit.ly/3gfLw07) for COCO2017 🎯
-* DDRNet pre-trained segmentation model - new pre-trained [checkpoints](https://bit.ly/41dkt89) and [recipes](http://bit.ly/3gfLw07) for Cityscapes and  [Knowledge distillation recipe for DDRNet](http://bit.ly/3GzZHHo)🎯
-
+* [YOLO-NAS](https://bit.ly/41WeNPZ)
+* New [predict function](https://bit.ly/3oZfaea) (predict on any image, video, url, path, stream)
+* [RoboFlow100](https://bit.ly/40YOJ5z) datasets integration 
+* A new [Documentation Hub](https://docs.deci.ai/super-gradients/documentation/source/welcome.html)
+* Integration with [DagsHub for experiment monitoring](https://bit.ly/3ALFUkQ)
+* Support [Darknet/Yolo format detection dataset](https://bit.ly/41VX6Qu) (used by Yolo v5, v6, v7, v8) 
+* [Segformer](https://bit.ly/3oYu6Jp) model and recipe 
+* Post Training Quantization and Quantization Aware Training - [notebooks](http://bit.ly/3KrN6an)
 
 
 Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
 Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
 
 
 ## Coming soon
 ## Coming soon
 __________________________________________________________________________________________________________
 __________________________________________________________________________________________________________
 - [ ] Pre-trained pose estimation model
 - [ ] Pre-trained pose estimation model
-- [ ] New predict function on detection models
-- [ ] RoboFlow100 datasets integration 
-- [ ] A new documentation hub
+- [ ] Test Time Augmentations (TTA)
+- [ ] Recipe to train DEKR model(convertable to TRT) 
+- [ ] Key-points Rescoring for Pose estimation 
 - [ ] LR finder
 - [ ] LR finder
+- [ ] Data analysis tools
 
 
 
 
 ## Table of Content
 ## Table of Content
Discard
@@ -44,19 +44,22 @@ All the available models are listed in the column `Model name`.
 ### Pretrained Object Detection PyTorch Checkpoints
 ### Pretrained Object Detection PyTorch Checkpoints
 
 
 
 
-| Model                 | Model Name            | Dataset | Resolution | mAP<sup>val<br>0.5:0.95 | Latency (HW)*<sub>T4</sub> | Latency (Production)**<sub>T4</sub> | Latency (HW)*<sub>Jetson Xavier NX</sub> | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub> |
-|-----------------------|-----------------------|---------|------------|-------------------------|----------------------------|-------------------------------------|------------------------------------------|---------------------------------------------------|:-------------------------------:|
-| SSD lite MobileNet v2 | ssd_lite_mobilenet_v2 | COCO    | 320x320    | 21.5                    | **0.77ms**                 | **1.40ms**                          | **5.28ms**                               | **6.44ms**                                        |            **4.13ms**           |
-| SSD lite MobileNet v1 | ssd_mobilenet_v1      | COCO    | 320x320    | 24.3                    | **1.55ms**                 | **2.84ms**                          | **8.07ms**                               | **9.14ms**                                        |           **22.76ms**           |
-| YOLOX nano            | yolox_n               | COCO    | 640x640    | 26.77                   | **2.47ms**                 | **4.09ms**                          | **11.49ms**                              | **12.97ms**                                       |              **-**              |
-| YOLOX tiny            | yolox_t               | COCO    | 640x640    | 37.18                   | **3.16ms**                 | **4.61ms**                          | **15.23ms**                              | **19.24ms**                                       |              **-**              |
-| YOLOX small           | yolox_s               | COCO    | 640x640    | 40.47                   | **3.58ms**                 | **4.94ms**                          | **18.88ms**                              | **22.48ms**                                       |              **-**              |
-| YOLOX medium          | yolox_m               | COCO    | 640x640    | 46.4                    | **6.40ms**                 | **7.65ms**                          | **39.22ms**                              | **44.5ms**                                        |              **-**              |
-| YOLOX large           | yolox_l               | COCO    | 640x640    | 49.25                   | **10.07ms**                | **11.12ms**                         | **68.73ms**                              | **77.01ms**                                       |              **-**              |
-| PP-YOLOE small        | ppyoloe_s            | COCO    | 640x640    | 42.52                   | **2.39ms**                 | **4.3ms**                           | **14.28ms**                              | **14.99ms**                                       |              **-**              |
-| PP-YOLOE medium       | ppyoloe_m            | COCO    | 640x640    | 47.11                   | **5.16ms**                 | **7.05ms**                          | **32.71ms**                              | **33.46ms**                                       |              **-**              |
-| PP-YOLOE large        | ppyoloe_l            | COCO    | 640x640    | 49.48                   | **7.65ms**                 | **9.59ms**                          | **51.13ms**                              | **50.39ms**                                       |              **-**              |
-| PP-YOLOE x-large      | ppyoloe_x            | COCO    | 640x640    | 51.15                   | **14.04ms**                | **15.96ms**                         | **94.92ms**                              | **94.22ms**                                       |              **-**              |
+| Model               | Model Name            | Dataset | Resolution | mAP<sup>val<br>0.5:0.95 | Latency (HW)*<sub>T4</sub>    | Latency (Production)**<sub>T4</sub> | Latency (HW)*<sub>Jetson Xavier NX</sub> | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub> |
+|---------------------|-----------------------|---------|------------|-------------------------|-------------------------------|-------------------------------------|------------------------------------------|---------------------------------------------------|:-------------------------------:|
+ | YOLO-NAS S	         | yolo_nas_s            | COCO |  640x640| 47.5(FP16) 47.03(INT8)	 | **3.21(FP16)** **2.36(INT8)** |
+ | YOLO-NAS M	         | yolo_nas_m            | COCO |  640x640| 51.55(FP16) 51.0(INT8)   | **5.85(FP16)** **3.78(INT8)** |
+ | YOLO-NAS L	         | yolo_nas_l            | COCO |  640x640| 52.22(FP16) 52.1(INT8)	  | **7.87(FP16)** **4.78(INT8)** |
+| PP-YOLOE small      | ppyoloe_s             | COCO    | 640x640    | 42.52                   | **2.39ms**                    | **4.3ms**                           | **14.28ms**                              | **14.99ms**                                       |              **-**              |
+| PP-YOLOE medium     | ppyoloe_m             | COCO    | 640x640    | 47.11                   | **5.16ms**                    | **7.05ms**                          | **32.71ms**                              | **33.46ms**                                       |              **-**              |
+| PP-YOLOE large      | ppyoloe_l             | COCO    | 640x640    | 49.48                   | **7.65ms**                    | **9.59ms**                          | **51.13ms**                              | **50.39ms**                                       |              **-**              |
+| PP-YOLOE x-large    | ppyoloe_x             | COCO    | 640x640    | 51.15                   | **14.04ms**                   | **15.96ms**                         | **94.92ms**                              | **94.22ms**                                       |              **-**              |
+| YOLOX nano          | yolox_n               | COCO    | 640x640    | 26.77                   | **2.47ms**                    | **4.09ms**                          | **11.49ms**                              | **12.97ms**                                       |              **-**              |
+| YOLOX tiny          | yolox_t               | COCO    | 640x640    | 37.18                   | **3.16ms**                    | **4.61ms**                          | **15.23ms**                              | **19.24ms**                                       |              **-**              |
+| YOLOX small         | yolox_s               | COCO    | 640x640    | 40.47                   | **3.58ms**                    | **4.94ms**                          | **18.88ms**                              | **22.48ms**                                       |              **-**              |
+| YOLOX medium        | yolox_m               | COCO    | 640x640    | 46.4                    | **6.40ms**                    | **7.65ms**                          | **39.22ms**                              | **44.5ms**                                        |              **-**              |
+| YOLOX large         | yolox_l               | COCO    | 640x640    | 49.25                   | **10.07ms**                   | **11.12ms**                         | **68.73ms**                              | **77.01ms**                                       |              **-**              |
+| SSD lite MobileNet v2 | ssd_lite_mobilenet_v2 | COCO    | 320x320    | 21.5                    | **0.77ms**                    | **1.40ms**                          | **5.28ms**                               | **6.44ms**                                        |            **4.13ms**           |
+| SSD lite MobileNet v1 | ssd_mobilenet_v1      | COCO    | 320x320    | 24.3                    | **1.55ms**                    | **2.84ms**                          | **8.07ms**                               | **9.14ms**                                        |           **22.76ms**           |
 
 
 > **NOTE:** <br/>
 > **NOTE:** <br/>
 > - Latency (HW)* - Hardware performance (not including IO)<br/>
 > - Latency (HW)* - Hardware performance (not including IO)<br/>
Discard
@@ -32,28 +32,29 @@ Check out our [Quickstart tutorial](QuickstartBasicToolkit.md) to get learn the
 
 
 You can also start from our tutorial on [Detection](ObjectDetection.md), [Segmentation](Segmentation.md) or [Pose Estimation](PoseEstimation.md).
 You can also start from our tutorial on [Detection](ObjectDetection.md), [Segmentation](Segmentation.md) or [Pose Estimation](PoseEstimation.md).
  
  
-## What's New
+## What's New (v3.1.0)
 __________________________________________________________________________________________________________
 __________________________________________________________________________________________________________
-* 【1/3/2023】 Lion optimizer was added  
-* 【27/2/2023】 Pose Estimation models and utilities were added to SuperGradients! 
-* 【20/2/2023】 PP-Yolo-E implementation 
-* 【17/1/2023】 Quantization Aware Training (QAT) and Post Training Quantization (PTQ) - including selective quantization 
-* 【17/11/2022】 Integration with ClearML
-* 【06/9/2022】 PP-LiteSeg - new pre-trained [checkpoints](http://bit.ly/3EGfKD4) and [recipes](http://bit.ly/3gfLw07) for Cityscapes with SOTA mIoU scores (~1.5% above paper)🎯
-* 【07/08/2022】DDRNet23 - new pre-trained [checkpoints](http://bit.ly/3EGfKD4) and [recipes](http://bit.ly/3gfLw07) for Cityscapes with SOTA mIoU scores (~1% above paper)🎯
-* 【27/07/2022】YOLOX models (object detection) - recipes and pre-trained checkpoints.
-* 【07/07/2022】SSD Lite MobileNet V2,V1 - Training [recipes](http://bit.ly/3gfLw07) and pre-trained [checkpoints](http://bit.ly/3EGfKD4) on COCO - Tailored for edge devices! πŸ“±
-* 【07/07/2022】 STDC  - new pre-trained [checkpoints](http://bit.ly/3EGfKD4) and [recipes](http://bit.ly/3gfLw07) for Cityscapes with super SOTA mIoU scores (~2.5% above paper)🎯
+
+* [YOLO-NAS](https://bit.ly/41WeNPZ)
+* New [predict function](https://bit.ly/3oZfaea) (predict on any image, video, url, path, stream)
+* [RoboFlow100](https://bit.ly/40YOJ5z) datasets integration 
+* A new [Documentation Hub](https://docs.deci.ai/super-gradients/documentation/source/welcome.html)
+* Integration with [DagsHub for experiment monitoring](https://bit.ly/3ALFUkQ)
+* Support [Darknet/Yolo format detection dataset](https://bit.ly/41VX6Qu) (used by Yolo v5, v6, v7, v8) 
+* [Segformer](https://bit.ly/3oYu6Jp) model and recipe 
+* Post Training Quantization and Quantization Aware Training - [notebooks](http://bit.ly/3KrN6an)
 
 
 Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
 Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
 
 
 ## Coming soon
 ## Coming soon
 __________________________________________________________________________________________________________
 __________________________________________________________________________________________________________
 
 
-- [ ] Tools for faster training 
-- [ ] Tools for training health monitoring 
-- [ ] Integration with more professional 3rd party tools.
-- [ ] SegFormers
+- [ ] Pre-trained pose estimation model
+- [ ] Test Time Augmentations (TTA)
+- [ ] Recipe to train DEKR model(convertable to TRT) 
+- [ ] Key-points Rescoring for Pose estimation 
+- [ ] LR finder
+- [ ] Data analysis tools
 ## Citation
 ## Citation
 
 
 If you are using SuperGradients library in your research, please cite SuperGradients deep learning training library.
 If you are using SuperGradients library in your research, please cite SuperGradients deep learning training library.
Discard