Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#875 Feature/sg 761 yolo nas

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-761-yolo-nas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
  1. """
  2. This is a PyTorch implementation of MobileNetV2 architecture as described in the paper:
  3. Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation.
  4. https://arxiv.org/pdf/1801.04381
  5. Code taken from https://github.com/tonylins/pytorch-mobilenet-v2
  6. License: Apache Version 2.0, January 2004 http://www.apache.org/licenses/
  7. Pre-trained ImageNet model: 'deci-model-repository/mobilenet_v2/ckpt_best.pth'
  8. """
  9. import numpy as np
  10. import torch
  11. import torch.nn as nn
  12. import math
  13. from super_gradients.common.registry.registry import register_model
  14. from super_gradients.common.object_names import Models
  15. from super_gradients.training.models.sg_module import SgModule
  16. from super_gradients.training.utils.utils import get_param
  17. class MobileNetBase(SgModule):
  18. def __init__(self):
  19. super(MobileNetBase, self).__init__()
  20. def replace_head(self, new_num_classes=None, new_head=None):
  21. if new_num_classes is None and new_head is None:
  22. raise ValueError("At least one of new_num_classes, new_head must be given to replace output layer.")
  23. if new_head is not None:
  24. self.classifier = new_head
  25. else:
  26. self.classifier[-1] = nn.Linear(self.classifier[-1].in_features, new_num_classes)
  27. def conv_bn(inp, oup, stride):
  28. return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True))
  29. def conv_1x1_bn(inp, oup):
  30. return nn.Sequential(nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True))
  31. def make_divisible(x, divisible_by=8):
  32. import numpy as np
  33. return int(np.ceil(x * 1.0 / divisible_by) * divisible_by)
  34. class InvertedResidual(nn.Module):
  35. def __init__(self, inp, oup, stride, expand_ratio, grouped_conv_size=1):
  36. """
  37. :param inp: number of input channels
  38. :param oup: number of output channels
  39. :param stride: conv stride
  40. :param expand_ratio: expansion ratio of the hidden layer after pointwise conv
  41. :grouped_conv_size: number of channels per grouped convolution, for depth-wise-separable convolution, use grouped_conv_size=1
  42. """
  43. super(InvertedResidual, self).__init__()
  44. self.stride = stride
  45. assert stride in [1, 2]
  46. hidden_dim = int(inp * expand_ratio)
  47. groups = int(hidden_dim / grouped_conv_size)
  48. self.use_res_connect = self.stride == 1 and inp == oup
  49. if expand_ratio == 1:
  50. self.conv = nn.Sequential(
  51. # dw
  52. nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=groups, bias=False),
  53. nn.BatchNorm2d(hidden_dim),
  54. nn.ReLU6(inplace=True),
  55. # pw-linear
  56. nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
  57. nn.BatchNorm2d(oup),
  58. )
  59. else:
  60. self.conv = nn.Sequential(
  61. # pw
  62. nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
  63. nn.BatchNorm2d(hidden_dim),
  64. nn.ReLU6(inplace=True),
  65. # dw
  66. nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=groups, bias=False),
  67. nn.BatchNorm2d(hidden_dim),
  68. nn.ReLU6(inplace=True),
  69. # pw-linear
  70. nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
  71. nn.BatchNorm2d(oup),
  72. )
  73. def forward(self, x):
  74. if self.use_res_connect:
  75. return x + self.conv(x)
  76. else:
  77. return self.conv(x)
  78. class MobileNetV2(MobileNetBase):
  79. def __init__(
  80. self,
  81. num_classes,
  82. dropout: float,
  83. width_mult=1.0,
  84. structure=None,
  85. backbone_mode: bool = False,
  86. grouped_conv_size=1,
  87. in_channels=3,
  88. ) -> object:
  89. super(MobileNetV2, self).__init__()
  90. self.in_channels = in_channels
  91. block = InvertedResidual
  92. last_channel = 1280
  93. # IF STRUCTURE IS NONE - USE THE DEFAULT STRUCTURE NOTED
  94. # t, c, n, s stage-0 is the first conv_bn layer
  95. self.interverted_residual_setting = structure or [
  96. [1, 16, 1, 1], # stage-1
  97. [6, 24, 2, 2], # stage-2
  98. [6, 32, 3, 2], # stage-3
  99. [6, 64, 4, 2], # stage-4
  100. [6, 96, 3, 1], # stage-5
  101. [6, 160, 3, 2], # stage-6
  102. [6, 320, 1, 1],
  103. ] # stage-7
  104. # stage-8 is the last_layer
  105. self.last_channel = make_divisible(last_channel * width_mult) if width_mult > 1.0 else last_channel
  106. curr_channels = 32
  107. self.features = [conv_bn(in_channels, curr_channels, 2)]
  108. # building inverted residual blocks
  109. for t, c, n, s in self.interverted_residual_setting:
  110. output_channel = make_divisible(c * width_mult) if t > 1 else c
  111. for i in range(n):
  112. if i == 0:
  113. self.features.append(block(curr_channels, output_channel, s, expand_ratio=t, grouped_conv_size=grouped_conv_size))
  114. else:
  115. self.features.append(block(curr_channels, output_channel, 1, expand_ratio=t, grouped_conv_size=grouped_conv_size))
  116. curr_channels = output_channel
  117. # building last several layers
  118. self.features.append(conv_1x1_bn(curr_channels, self.last_channel))
  119. # make it nn.Sequential
  120. self.features = nn.Sequential(*self.features)
  121. self.backbone_mode = backbone_mode
  122. if self.backbone_mode:
  123. self.classifier = nn.Identity()
  124. # TODO: remove during migration of YOLOs to the new base
  125. self.backbone_connection_channels = self._extract_connection_layers_input_channel_size()
  126. else:
  127. # building classifier
  128. self.classifier = nn.Sequential(nn.Dropout(dropout), nn.Linear(self.last_channel, num_classes))
  129. self._initialize_weights()
  130. def forward(self, x):
  131. x = self.features(x)
  132. if self.backbone_mode:
  133. return x
  134. else:
  135. x = x.mean(3).mean(2)
  136. return self.classifier(x)
  137. def _extract_connection_layers_input_channel_size(self):
  138. """
  139. Extracts the number of channels out when using mobilenetV2 as yolo backbone
  140. """
  141. curr_layer_input = torch.rand(1, self.in_channels, 320, 320) # input dims are used to extract number of channels
  142. layers_num_to_extract = [np.array(self.interverted_residual_setting)[:stage, 2].sum() for stage in [3, 5]]
  143. connection_layers_input_channel_size = []
  144. for layer_idx, feature in enumerate(self.features):
  145. curr_layer_input = feature(curr_layer_input)
  146. if layer_idx in layers_num_to_extract:
  147. connection_layers_input_channel_size.append(curr_layer_input.shape[1])
  148. connection_layers_input_channel_size.append(self.last_channel)
  149. connection_layers_input_channel_size.reverse()
  150. return connection_layers_input_channel_size
  151. def _initialize_weights(self):
  152. for m in self.modules():
  153. if isinstance(m, nn.Conv2d):
  154. n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
  155. m.weight.data.normal_(0, math.sqrt(2.0 / n))
  156. if m.bias is not None:
  157. m.bias.data.zero_()
  158. elif isinstance(m, nn.BatchNorm2d):
  159. m.weight.data.fill_(1)
  160. m.bias.data.zero_()
  161. elif isinstance(m, nn.Linear):
  162. n = m.weight.size(1)
  163. m.weight.data.normal_(0, 0.01)
  164. m.bias.data.zero_()
  165. @register_model(Models.MOBILENET_V2)
  166. class MobileNetV2Base(MobileNetV2):
  167. def __init__(self, arch_params):
  168. """
  169. :param arch_params: HpmStruct
  170. must contain: 'num_classes': int
  171. """
  172. super().__init__(
  173. num_classes=arch_params.num_classes,
  174. width_mult=1.0,
  175. structure=None,
  176. dropout=get_param(arch_params, "dropout", 0.0),
  177. in_channels=get_param(arch_params, "in_channels", 3),
  178. )
  179. @register_model(Models.MOBILE_NET_V2_135)
  180. class MobileNetV2_135(MobileNetV2):
  181. def __init__(self, arch_params):
  182. """
  183. This Model achieves–≠ 75.73% on Imagenet - similar to Resnet50
  184. :param arch_params: HpmStruct
  185. must contain: 'num_classes': int
  186. """
  187. super().__init__(
  188. num_classes=arch_params.num_classes,
  189. width_mult=1.35,
  190. structure=None,
  191. dropout=get_param(arch_params, "dropout", 0.0),
  192. in_channels=get_param(arch_params, "in_channels", 3),
  193. )
  194. @register_model(Models.CUSTOM_MOBILENET_V2)
  195. class CustomMobileNetV2(MobileNetV2):
  196. def __init__(self, arch_params):
  197. """
  198. :param arch_params:–≠ HpmStruct
  199. must contain:
  200. 'num_classes': int
  201. 'width_mult': float
  202. 'structure' : list. specify the mobilenetv2 architecture
  203. """
  204. super().__init__(
  205. num_classes=arch_params.num_classes,
  206. width_mult=arch_params.width_mult,
  207. structure=arch_params.structure,
  208. dropout=get_param(arch_params, "dropout", 0.0),
  209. in_channels=get_param(arch_params, "in_channels", 3),
  210. )
Discard
Tip!

Press p or to see the previous file or, n or to see the next file