Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#875 Feature/sg 761 yolo nas

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-761-yolo-nas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
  1. """
  2. Googlenet code based on https://pytorch.org/vision/stable/_modules/torchvision/models/googlenet.html
  3. """
  4. from collections import namedtuple
  5. import torch
  6. import torch.nn as nn
  7. import torch.nn.functional as F
  8. from collections import OrderedDict
  9. from super_gradients.common.registry.registry import register_model
  10. from super_gradients.common.object_names import Models
  11. from super_gradients.training.models.sg_module import SgModule
  12. GoogLeNetOutputs = namedtuple("GoogLeNetOutputs", ["log_", "aux_logits2", "aux_logits1"])
  13. class GoogLeNet(SgModule):
  14. def __init__(self, num_classes=1000, aux_logits=True, init_weights=True, backbone_mode=False, dropout=0.3):
  15. super(GoogLeNet, self).__init__()
  16. self.num_classes = num_classes
  17. self.backbone_mode = backbone_mode
  18. self.aux_logits = aux_logits
  19. self.dropout_p = dropout
  20. self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
  21. self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
  22. self.conv2 = BasicConv2d(64, 64, kernel_size=1)
  23. self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
  24. self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
  25. self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
  26. self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
  27. self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
  28. self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
  29. self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
  30. self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
  31. self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
  32. self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
  33. self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
  34. self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
  35. self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
  36. if aux_logits:
  37. self.aux1 = InceptionAux(512, num_classes)
  38. self.aux2 = InceptionAux(528, num_classes)
  39. else:
  40. self.aux1 = None
  41. self.aux2 = None
  42. self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
  43. if not self.backbone_mode:
  44. self.dropout = nn.Dropout(self.dropout_p)
  45. self.fc = nn.Linear(1024, num_classes)
  46. if init_weights:
  47. self._initialize_weights()
  48. def _initialize_weights(self):
  49. for m in self.modules():
  50. if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
  51. import scipy.stats as stats
  52. x = stats.truncnorm(-2, 2, scale=0.01)
  53. values = torch.as_tensor(x.rvs(m.weight.numel()), dtype=m.weight.dtype)
  54. values = values.view(m.weight.size())
  55. with torch.no_grad():
  56. m.weight.copy_(values)
  57. elif isinstance(m, nn.BatchNorm2d):
  58. nn.init.constant_(m.weight, 1)
  59. nn.init.constant_(m.bias, 0)
  60. def _forward(self, x):
  61. # N x 3 x 224 x 224
  62. x = self.conv1(x)
  63. # N x 64 x 112 x 112
  64. x = self.maxpool1(x)
  65. # N x 64 x 56 x 56
  66. x = self.conv2(x)
  67. # N x 64 x 56 x 56
  68. x = self.conv3(x)
  69. # N x 192 x 56 x 56
  70. x = self.maxpool2(x)
  71. # N x 192 x 28 x 28
  72. x = self.inception3a(x)
  73. # N x 256 x 28 x 28
  74. x = self.inception3b(x)
  75. # N x 480 x 28 x 28
  76. x = self.maxpool3(x)
  77. # N x 480 x 14 x 14
  78. x = self.inception4a(x)
  79. # N x 512 x 14 x 14
  80. aux1 = None
  81. if self.aux1 is not None and self.training:
  82. aux1 = self.aux1(x)
  83. x = self.inception4b(x)
  84. # N x 512 x 14 x 14
  85. x = self.inception4c(x)
  86. # N x 512 x 14 x 14
  87. x = self.inception4d(x)
  88. # N x 528 x 14 x 14
  89. aux2 = None
  90. if self.aux2 is not None and self.training:
  91. aux2 = self.aux2(x)
  92. x = self.inception4e(x)
  93. # N x 832 x 14 x 14
  94. x = self.maxpool4(x)
  95. # N x 832 x 7 x 7
  96. x = self.inception5a(x)
  97. # N x 832 x 7 x 7
  98. x = self.inception5b(x)
  99. # N x 1024 x 7 x 7
  100. x = self.avgpool(x)
  101. # N x 1024 x 1 x 1
  102. x = torch.flatten(x, 1)
  103. # N x 1024
  104. if not self.backbone_mode:
  105. x = self.dropout(x)
  106. x = self.fc(x)
  107. # N x num_classes
  108. return x, aux2, aux1
  109. def forward(self, x):
  110. x, aux1, aux2 = self._forward(x)
  111. if self.training and self.aux_logits:
  112. return GoogLeNetOutputs(x, aux2, aux1)
  113. else:
  114. return x
  115. def load_state_dict(self, state_dict, strict=True):
  116. """
  117. load_state_dict - Overloads the base method and calls it to load a modified dict for usage as a backbone
  118. :param state_dict: The state_dict to load
  119. :param strict: strict loading (see super() docs)
  120. """
  121. pretrained_model_weights_dict = state_dict.copy()
  122. if self.backbone_mode:
  123. # FIRST LET'S POP THE LAST TWO LAYERS - NO NEED TO LOAD THEIR VALUES SINCE THEY ARE IRRELEVANT AS A BACKBONE
  124. pretrained_model_weights_dict.popitem()
  125. pretrained_model_weights_dict.popitem()
  126. pretrained_backbone_weights_dict = OrderedDict()
  127. for layer_name, weights in pretrained_model_weights_dict.items():
  128. # GET THE LAYER NAME WITHOUT THE 'module.' PREFIX
  129. name_without_module_prefix = layer_name.split("module.")[1]
  130. # MAKE SURE THESE ARE NOT THE FINAL LAYERS
  131. pretrained_backbone_weights_dict[name_without_module_prefix] = weights
  132. c_temp = torch.nn.Linear(1024, self.num_classes)
  133. torch.nn.init.xavier_uniform(c_temp.weight)
  134. pretrained_backbone_weights_dict["fc.weight"] = c_temp.weight
  135. pretrained_backbone_weights_dict["fc.bias"] = c_temp.bias
  136. # RETURNING THE UNMODIFIED/MODIFIED STATE DICT DEPENDING ON THE backbone_mode VALUE
  137. super().load_state_dict(pretrained_backbone_weights_dict, strict)
  138. else:
  139. super().load_state_dict(pretrained_model_weights_dict, strict)
  140. class Inception(nn.Module):
  141. def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj, conv_block=None):
  142. super(Inception, self).__init__()
  143. if conv_block is None:
  144. conv_block = BasicConv2d
  145. self.branch1 = conv_block(in_channels, ch1x1, kernel_size=1)
  146. self.branch2 = nn.Sequential(conv_block(in_channels, ch3x3red, kernel_size=1), conv_block(ch3x3red, ch3x3, kernel_size=3, padding=1))
  147. self.branch3 = nn.Sequential(conv_block(in_channels, ch5x5red, kernel_size=1), conv_block(ch5x5red, ch5x5, kernel_size=3, padding=1))
  148. self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True), conv_block(in_channels, pool_proj, kernel_size=1))
  149. def _forward(self, x):
  150. branch1 = self.branch1(x)
  151. branch2 = self.branch2(x)
  152. branch3 = self.branch3(x)
  153. branch4 = self.branch4(x)
  154. outputs = [branch1, branch2, branch3, branch4]
  155. return outputs
  156. def forward(self, x):
  157. outputs = self._forward(x)
  158. return torch.cat(outputs, 1)
  159. class InceptionAux(nn.Module):
  160. def __init__(self, in_channels, num_classes, conv_block=None):
  161. super(InceptionAux, self).__init__()
  162. if conv_block is None:
  163. conv_block = BasicConv2d
  164. self.conv = conv_block(in_channels, 128, kernel_size=1)
  165. self.fc1 = nn.Linear(2048, 1024)
  166. self.fc2 = nn.Linear(1024, num_classes)
  167. def forward(self, x):
  168. # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
  169. x = F.adaptive_avg_pool2d(x, (4, 4))
  170. # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
  171. x = self.conv(x)
  172. # N x 128 x 4 x 4
  173. x = torch.flatten(x, 1)
  174. # N x 2048
  175. x = F.relu(self.fc1(x), inplace=True)
  176. # N x 1024
  177. x = F.dropout(x, 0.7, training=self.training)
  178. # N x 1024
  179. x = self.fc2(x)
  180. # N x 1000 (num_classes)
  181. return x
  182. class BasicConv2d(nn.Module):
  183. def __init__(self, in_channels, out_channels, **kwargs):
  184. super(BasicConv2d, self).__init__()
  185. self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
  186. self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
  187. self.relu = nn.ReLU()
  188. def forward(self, x):
  189. x = self.conv(x)
  190. x = self.bn(x)
  191. x = self.relu(x)
  192. return x
  193. @register_model(Models.GOOGLENET_V1)
  194. class GoogleNetV1(GoogLeNet):
  195. def __init__(self, arch_params):
  196. super(GoogleNetV1, self).__init__(aux_logits=False, num_classes=arch_params.num_classes, dropout=arch_params.dropout)
Discard
Tip!

Press p or to see the previous file or, n or to see the next file