Thank you! We'll be in touch ASAP.
Something went wrong, please try again or contact us directly at contact@dagshub.com
Deci-AI:master
deci-ai:feature/SG-761-yolo-nas
# A recipe to fine-tune YoloNAS on Roboflow datasets. # Checkout the datasets at https://universe.roboflow.com/roboflow-100?ref=blog.roboflow.com # # `dataset_name` refers to the official name of the dataset. # You can find it in the url of the dataset: https://universe.roboflow.com/roboflow-100/digits-t2eg6 -> digits-t2eg6 # # Example: python -m super_gradients.train_from_recipe --config-name=roboflow_yolo_nas_s dataset_name=digits-t2eg6 defaults: - training_hyperparams: coco2017_yolo_nas_train_params - dataset_params: roboflow_detection_dataset_params - checkpoint_params: default_checkpoint_params - arch_params: yolo_nas_s_arch_params - _self_ - variable_setup train_dataloader: roboflow_train_yolox val_dataloader: roboflow_val_yolox dataset_name: ??? # Placeholder for the name of the dataset you want to use (e.g. "digits-t2eg6") dataset_params: dataset_name: ${dataset_name} train_dataloader_params: batch_size: 16 val_dataloader_params: batch_size: 16 num_classes: ${roboflow_dataset_num_classes:${dataset_name}} architecture: yolo_nas_s arch_params: num_classes: ${num_classes} load_checkpoint: False checkpoint_params: pretrained_weights: coco result_path: # By defaults saves results in checkpoints directory resume: False training_hyperparams: resume: ${resume} zero_weight_decay_on_bias_and_bn: True lr_warmup_epochs: 3 warmup_mode: linear_epoch_step initial_lr: 5e-4 cosine_final_lr_ratio: 0.1 optimizer_params: weight_decay: 0.0001 ema: True ema_params: decay: 0.9 max_epochs: 100 mixed_precision: True criterion_params: num_classes: ${num_classes} phase_callbacks: [] loss: ppyoloe_loss: num_classes: ${num_classes} reg_max: 16 valid_metrics_list: - DetectionMetrics_050: score_thres: 0.1 top_k_predictions: 300 num_cls: ${num_classes} normalize_targets: True post_prediction_callback: _target_: super_gradients.training.models.detection_models.pp_yolo_e.PPYoloEPostPredictionCallback score_threshold: 0.01 nms_top_k: 1000 max_predictions: 300 nms_threshold: 0.7 metric_to_watch: 'mAP@0.50' multi_gpu: Off num_gpus: 1 experiment_suffix: "" experiment_name: ${architecture}_roboflow_${dataset_name}${experiment_suffix}
Press p or to see the previous file or, n or to see the next file