Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#875 Feature/sg 761 yolo nas

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-761-yolo-nas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
  1. # RepVGGA0 Imagenet classification training:
  2. # This example trains with batch_size = 64 * 4 GPUs, total 256.
  3. # Training time on 4 X GeForce RTX 3090 Ti is 10min / epoch, total time ~ 20h 22m (DistributedDataParallel).
  4. # Reach => 72.05 Top1 accuracy.
  5. #
  6. # Log and tensorboard at s3://deci-pretrained-models/repvggg-a0-imagenet-tensorboard/
  7. #
  8. # Instructions:
  9. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  10. # 1. Move to the project root (where you will find the ReadMe and src folder)
  11. # 2. Run the command:
  12. # python -m super_gradients.train_from_recipe --config-name=imagenet_repvgg
  13. defaults:
  14. - training_hyperparams: imagenet_repvgg_train_params
  15. - dataset_params: imagenet_dataset_params
  16. - arch_params: repvgg_arch_params
  17. - checkpoint_params: default_checkpoint_params
  18. - _self_
  19. - variable_setup
  20. arch_params:
  21. num_classes: 1000
  22. build_residual_branches: True
  23. train_dataloader: imagenet_train
  24. val_dataloader: imagenet_val
  25. resume: False
  26. training_hyperparams:
  27. resume: ${resume}
  28. experiment_name: repvgg_a0_imagenet_reproduce_fix
  29. multi_gpu: DDP
  30. num_gpus: 4
  31. architecture: repvgg_a0
Discard
Tip!

Press p or to see the previous file or, n or to see the next file