Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#647 Feature/sg 573 Integrate new EMA decay schedules

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-573-Integrate-EMA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  1. # RegSeg segmentation training example with Cityscapes dataset.
  2. # Reproduction of paper: Rethink Dilated Convolution for Real-time Semantic Segmentation.
  3. #
  4. # Instructions:
  5. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  6. # 1. Move to the project root (where you will find the ReadMe and src folder)
  7. # 2. Run the command:
  8. # python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_regseg48
  9. #
  10. #
  11. # Validation mIoU - Cityscapes, training time:
  12. # RegSeg48: input-size: [1024, 2048] mIoU: 78.15 using 4 GeForce RTX 2080 Ti with DDP, ~2 minutes / epoch
  13. #
  14. # Official git repo:
  15. # https://github.com/RolandGao/RegSeg
  16. # Paper:
  17. # https://arxiv.org/pdf/2111.09957.pdf
  18. #
  19. #
  20. # Logs, tensorboards and network checkpoints:
  21. # s3://deci-pretrained-models/regseg48_cityscapes/
  22. #
  23. #
  24. # Learning rate and batch size parameters, using 4 GeForce RTX 2080 Ti with DDP:
  25. # RegSeg48: input-size: [1024, 2048] initial_lr: 0.02 batch-size: 4 * 4gpus = 16
  26. defaults:
  27. - training_hyperparams: default_train_params
  28. - dataset_params: cityscapes_regseg48_dataset_params
  29. - checkpoint_params: default_checkpoint_params
  30. - _self_
  31. train_dataloader: cityscapes_train
  32. val_dataloader: cityscapes_val
  33. cityscapes_ignored_label: 19 # convenience parameter since it is used in many places in the YAML
  34. architecture: regseg48
  35. arch_params:
  36. num_classes: 19
  37. strict_load: no_key_matching
  38. load_checkpoint: False
  39. ckpt_root_dir:
  40. resume: False
  41. training_hyperparams:
  42. sync_bn: True
  43. resume: ${resume}
  44. max_epochs: 800
  45. lr_mode: poly
  46. initial_lr: 0.02 # for effective batch_size=16
  47. lr_warmup_epochs: 0
  48. optimizer: SGD
  49. optimizer_params:
  50. momentum: 0.9
  51. weight_decay: 5e-4
  52. ema: True
  53. loss: cross_entropy
  54. criterion_params:
  55. ignore_index: ${cityscapes_ignored_label}
  56. train_metrics_list:
  57. - PixelAccuracy:
  58. ignore_label: ${cityscapes_ignored_label}
  59. - IoU:
  60. num_classes: 20
  61. ignore_index: ${cityscapes_ignored_label}
  62. valid_metrics_list:
  63. - PixelAccuracy:
  64. ignore_label: ${cityscapes_ignored_label}
  65. - IoU:
  66. num_classes: 20
  67. ignore_index: ${cityscapes_ignored_label}
  68. metric_to_watch: IoU
  69. greater_metric_to_watch_is_better: True
  70. _convert_: all
  71. project_name: RegSeg
  72. experiment_name: ${architecture}_cityscapes
  73. multi_gpu: AUTO
  74. num_gpus: 4
  75. # THE FOLLOWING PARAMS ARE DIRECTLY USED BY HYDRA
  76. hydra:
  77. run:
  78. # Set the output directory (i.e. where .hydra folder that logs all the input params will be generated)
  79. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file