Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#647 Feature/sg 573 Integrate new EMA decay schedules

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-573-Integrate-EMA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
  1. # PPLiteSeg segmentation training example with Cityscapes dataset.
  2. # Torch implementation of the paper:
  3. # Juncai Peng, Yi Liu, Shiyu Tang, Yuying Hao, Lutao Chu, Guowei Chen, Zewu Wu, Zeyu Chen, Zhiliang Yu, Yuning Du,
  4. # Qingqing Dang,Baohua Lai, Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma.
  5. # PP-LiteSeg: A Superior Real-Time Semantic Segmentation Model.
  6. # Instructions:
  7. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  8. # 1. Move to the project root (where you will find the ReadMe and src folder)
  9. # 2. Run the command:
  10. # PPLite-T-Seg75: python src/super_gradients/examples/train_from_recipe.py --config-name=cityscapes_pplite_seg75 checkpoint_params.checkpoint_path=<stdc1-backbone-pretrained-path> architecture=pp_lite_t_seg
  11. # PPLite-B-Seg75: python src/super_gradients/examples/train_from_recipe.py --config-name=cityscapes_pplite_seg75 checkpoint_params.checkpoint_path=<stdc2-backbone-pretrained-path> architecture=pp_lite_b_seg
  12. #
  13. #
  14. # Validation mIoU - Cityscapes, training time:
  15. # PPLite-T-Seg75: input-size: [768, 1536] mIoU: 77.56 4 X RTX A5000, 13 H
  16. # PPLite-B-Seg75: input-size: [768, 1536] mIoU: 78.52 4 X RTX A5000, 14 H
  17. #
  18. # Official git repo:
  19. # https://github.com/PaddlePaddle/PaddleSeg/
  20. # Paper:
  21. # https://arxiv.org/abs/2204.02681
  22. #
  23. # Pretrained checkpoints:
  24. # Backbones- downloaded from the STDC author's official repo.
  25. # PPLite-T-Seg75, (STDC1-backbone): https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc1_imagenet_pretrained.pth
  26. # PPLite-B-Seg75, (STDC2-backbone): https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc2_imagenet_pretrained.pth
  27. #
  28. # Logs, tensorboards and network checkpoints:
  29. # PPLite-T-Seg75: https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_t_seg75/
  30. # PPLite-B-Seg75: https://deci-pretrained-models.s3.amazonaws.com/ppliteseg/cityscapes/pplite_b_seg75/
  31. #
  32. # Learning rate and batch size parameters, using 2 RTX A5000 with DDP:
  33. # PPLite-T-Seg75: input-size: [768, 768] initial_lr: 0.01 batch-size: 8 * 4gpus = 32
  34. # PPLite-B-Seg75: input-size: [768, 768] initial_lr: 0.01 batch-size: 8 * 4gpus = 32
  35. #
  36. # Comments:
  37. # * ImageNet Pretrained backbones were used.
  38. defaults:
  39. - training_hyperparams: cityscapes_default_train_params
  40. - dataset_params: cityscapes_ppliteseg_seg75_dataset_params
  41. - checkpoint_params: default_checkpoint_params
  42. - _self_
  43. train_dataloader: cityscapes_train
  44. val_dataloader: cityscapes_val
  45. architecture: pp_lite_t_seg
  46. arch_params:
  47. num_classes: 19
  48. use_aux_heads: True
  49. checkpoint_params:
  50. checkpoint_path:
  51. load_backbone: True
  52. load_weights_only: True
  53. strict_load: no_key_matching
  54. training_hyperparams:
  55. sync_bn: True
  56. loss:
  57. dice_ce_edge_loss:
  58. num_classes: 19
  59. ignore_index: 19
  60. num_aux_heads: 3
  61. num_detail_heads: 0
  62. weights: [ 1., 1., 1., 1. ]
  63. dice_ce_weights: [ 1., 1. ]
  64. ce_edge_weights: [ .5, .5 ]
  65. edge_kernel: 5
  66. multi_gpu: DDP
  67. num_gpus: 4
  68. experiment_name: ${architecture}75_cityscapes
  69. ckpt_root_dir:
  70. # THE FOLLOWING PARAMS ARE DIRECTLY USED BY HYDRA
  71. hydra:
  72. run:
  73. # Set the output directory (i.e. where .hydra folder that logs all the input params will be generated)
  74. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file