Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#647 Feature/sg 573 Integrate new EMA decay schedules

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-573-Integrate-EMA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
  1. # DDRNet segmentation training example with Cityscapes dataset.
  2. # Paper:
  3. # "Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes"
  4. # https://arxiv.org/abs/2104.13188
  5. #
  6. # Instructions:
  7. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  8. # 1. Move to the project root (where you will find the ReadMe and src folder)
  9. # 2. Run the command:
  10. # DDRNet23: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_ddrnet
  11. # DDRNet23-Slim: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_ddrnet architecture=ddrnet_23_slim
  12. # Note: add "checkpoint_params.checkpoint_path=<ddrnet23-backbone-pretrained-path>" to use pretrained backbone
  13. #
  14. # Validation mIoU - Cityscapes, training time:
  15. # DDRNet23: input-size: [1024, 2048] mIoU: 80.26 4 X RTX A5000, 12 H
  16. # DDRNet23-Slim: input-size: [1024, 2048] mIoU: 78.01 4 X RTX A5000, 9 H
  17. #
  18. # Official git repo:
  19. # https://github.com/ydhongHIT/DDRNet
  20. #
  21. # Pretrained checkpoints:
  22. # Backbones- downloaded from the author's official repo.
  23. # https://deci-pretrained-models.s3.amazonaws.com/ddrnet/imagenet_pt_backbones/ddrnet23_bb_imagenet.pth
  24. # https://deci-pretrained-models.s3.amazonaws.com/ddrnet/imagenet_pt_backbones/ddrnet23_slim_bb_imagenet.pth
  25. #
  26. # Logs, tensorboards and network checkpoints:
  27. # DDRNet23: https://deci-pretrained-models.s3.amazonaws.com/ddrnet/cityscapes/ddrnet23/
  28. # DDRNet23-Slim: https://deci-pretrained-models.s3.amazonaws.com/ddrnet/cityscapes/ddrnet23_slim/
  29. #
  30. # Learning rate and batch size parameters, using 4 RTX A5000 with DDP:
  31. # DDRNet23: input-size: [1024, 1024] initial_lr: 0.0075 batch-size: 6 * 4gpus = 24
  32. # DDRNet23-Slim: input-size: [1024, 1024] initial_lr: 0.0075 batch-size: 6 * 4gpus = 24
  33. #
  34. # Comments:
  35. # * Pretrained backbones were used.
  36. defaults:
  37. - training_hyperparams: cityscapes_default_train_params
  38. - dataset_params: cityscapes_ddrnet_dataset_params
  39. - checkpoint_params: default_checkpoint_params
  40. - _self_
  41. train_dataloader: cityscapes_train
  42. val_dataloader: cityscapes_val
  43. architecture: ddrnet_23
  44. training_hyperparams:
  45. max_epochs: 500
  46. initial_lr: 0.0075 # batch size 24
  47. loss:
  48. dice_ce_edge_loss:
  49. num_classes: 19
  50. ignore_index: 19
  51. num_aux_heads: 1
  52. num_detail_heads: 0
  53. weights: [ 1., 0.4 ]
  54. dice_ce_weights: [ 1., 1. ]
  55. ce_edge_weights: [ .5, .5 ]
  56. edge_kernel: 5
  57. sync_bn: True
  58. arch_params:
  59. num_classes: 19
  60. aux_head: True
  61. load_checkpoint: False
  62. checkpoint_params:
  63. load_checkpoint: ${load_checkpoint}
  64. checkpoint_path:
  65. load_backbone: True
  66. strict_load: no_key_matching
  67. experiment_name: ${architecture}_cityscapes
  68. ckpt_root_dir:
  69. multi_gpu: DDP
  70. num_gpus: 4
  71. # THE FOLLOWING PARAMS ARE DIRECTLY USED BY HYDRA
  72. hydra:
  73. run:
  74. # Set the output directory (i.e. where .hydra folder that logs all the input params will be generated)
  75. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file