Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#643 PPYolo-E

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-344-PP-Yolo-E-Training-Replicate-Recipe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
  1. # PP-Yolo-E Detection training on COCO2017 Dataset:
  2. # PP-Yolo-E trained in 640x640
  3. # Checkpoints + tensorboards: https://deci-pretrained-models.s3.amazonaws.com/ppyoloe_coco/
  4. # Recipe runs with batch size = 16 X 8 gpus = 128.
  5. # Instructions:
  6. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  7. # 1. Move to the project root (where you will find the ReadMe and src folder)
  8. # 2. Run the command you want:
  9. # ppyoloe_s: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_ppyoloe_s
  10. # ppyoloe_m: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_ppyoloe_m
  11. # ppyoloe_l: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_ppyoloe_l
  12. # ppyoloe_x: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_ppyoloe_x
  13. #
  14. # Training times and accuracies (mAP@0.5-0.95 (COCO API, confidence 0.001, IoU threshold 0.6, test on 640x640 images):
  15. # ppyoloe_s: 37h on 8 NVIDIA GeForce RTX 3090, mAP: 42.52 (val)
  16. # ppyoloe_m: 58h on 8 NVIDIA GeForce RTX 3090, mAP: 47.11 (val)
  17. # ppyoloe_l: COMING SOON
  18. # ppyoloe_x: COMING SOON
  19. #
  20. defaults:
  21. - training_hyperparams: coco2017_ppyoloe_train_params
  22. - dataset_params: coco_detection_ppyoloe_dataset_params
  23. - arch_params: ppyoloe_x_arch_params
  24. - checkpoint_params: default_checkpoint_params
  25. - _self_
  26. train_dataloader: coco2017_train_ppyoloe
  27. val_dataloader: coco2017_val_ppyoloe
  28. load_checkpoint: False
  29. resume: False
  30. dataset_params:
  31. train_dataloader_params:
  32. batch_size: 16
  33. training_hyperparams:
  34. resume: ${resume}
  35. mixed_precision: True
  36. architecture: pp_yoloe_x
  37. multi_gpu: DDP
  38. num_gpus: 8
  39. experiment_suffix: ""
  40. experiment_name: coco2017_${architecture}${experiment_suffix}
  41. ckpt_root_dir:
  42. # THE FOLLOWING PARAMS ARE DIRECTLY USED BY HYDRA
  43. hydra:
  44. run:
  45. # Set the output directory (i.e. where .hydra folder that logs all the input params will be generated)
  46. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file