1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
- # Cifar10 Classification Training:
- # Reaches ~94.9 Accuracy after 250 Epochs
- import super_gradients
- from super_gradients import Trainer
- from super_gradients.common.object_names import Models
- from super_gradients.training import models, dataloaders
- from super_gradients.training.metrics.classification_metrics import Accuracy, Top5
- from super_gradients.training.utils.early_stopping import EarlyStop
- from super_gradients.training.utils.callbacks import Phase
- # Define Parameters
- super_gradients.init_trainer()
- early_stop_acc = EarlyStop(Phase.VALIDATION_EPOCH_END, monitor="Accuracy", mode="max", patience=3, verbose=True)
- early_stop_val_loss = EarlyStop(Phase.VALIDATION_EPOCH_END, monitor="LabelSmoothingCrossEntropyLoss", mode="min", patience=3, verbose=True)
- train_params = {
- "max_epochs": 250,
- "lr_updates": [100, 150, 200],
- "lr_decay_factor": 0.1,
- "lr_mode": "step",
- "lr_warmup_epochs": 0,
- "initial_lr": 0.1,
- "loss": "cross_entropy",
- "optimizer": "SGD",
- "criterion_params": {},
- "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()],
- "valid_metrics_list": [Accuracy(), Top5()],
- "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "phase_callbacks": [early_stop_acc, early_stop_val_loss],
- }
- # Define Model
- trainer = Trainer("Callback_Example")
- # Build Model
- model = models.get(Models.RESNET18_CIFAR, num_classes=10)
- trainer.train(model=model, training_params=train_params, train_loader=dataloaders.cifar10_train(), valid_loader=dataloaders.cifar10_val())
|