Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#604 fix master installation

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-000_fix_master_inastallation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
  1. # RegnetY Imagenet classification training:
  2. # This example trains with batch_size = 256
  3. # Training time on a single GeForce RTX 2080 Ti, and top1 accuracies:
  4. # 11 days for RegnetY200, 70.88
  5. # 12 days for RegnetY400, 74.74
  6. # 19 days for RegnetY600, 76.18
  7. # 20 days for RegnetY800, 77.07
  8. # NOTE: Training should probably be lower as resources were shared among the above runs.
  9. #
  10. # Logs and tensorboards at:
  11. # https://deci-pretrained-models.s3.amazonaws.com/RegnetY800/
  12. # https://deci-pretrained-models.s3.amazonaws.com/RegnetY600/
  13. # https://deci-pretrained-models.s3.amazonaws.com/RegnetY400/
  14. # https://deci-pretrained-models.s3.amazonaws.com/RegnetY200/
  15. #
  16. # Instructions:
  17. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  18. # 1. Move to the project root (where you will find the ReadMe and src folder)
  19. # 2. Run the command:
  20. # regnetY200: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY200
  21. # regnetY400: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY400
  22. # regnetY600: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY600
  23. # regnetY800: python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY800
  24. defaults:
  25. - training_hyperparams: imagenet_regnetY_train_params
  26. - dataset_params: imagenet_regnetY_dataset_params
  27. - arch_params: regnetY_arch_params
  28. - checkpoint_params: default_checkpoint_params
  29. - _self_
  30. arch_params:
  31. num_classes: 1000
  32. dropout_prob: 0.5
  33. droppath_prob: 0.0
  34. train_dataloader: imagenet_train
  35. val_dataloader: imagenet_val
  36. load_checkpoint: False
  37. resume: False
  38. training_hyperparams:
  39. resume: ${resume}
  40. ckpt_root_dir:
  41. multi_gpu: Off
  42. architecture: regnetY800
  43. experiment_name: ${architecture}
  44. # THE FOLLOWING PARAMS ARE DIRECTLY USED BY HYDRA
  45. hydra:
  46. run:
  47. # Set the output directory (i.e. where .hydra folder that logs all the input params will be generated)
  48. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file