1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
|
- import unittest
- import shutil
- from coverage.annotate import os
- from super_gradients.common.environment import environment_config
- import torch
- class ShortenedRecipesAccuracyTests(unittest.TestCase):
- @classmethod
- def setUp(cls):
- cls.experiment_names = ["shortened_cifar10_resnet_accuracy_test", "shortened_coco2017_yolox_n_map_test", "shortened_cityscapes_regseg48_iou_test"]
- def test_shortened_cifar10_resnet_accuracy(self):
- self.assertTrue(self._reached_goal_metric(experiment_name="shortened_cifar10_resnet_accuracy_test", metric_value=0.9167, delta=0.05))
- def test_shortened_coco2017_yolox_n_map(self):
- self.assertTrue(self._reached_goal_metric(experiment_name="shortened_coco2017_yolox_n_map_test", metric_value=0.044, delta=0.02))
- def test_shortened_cityscapes_regseg48_iou(self):
- self.assertTrue(self._reached_goal_metric(experiment_name="shortened_cityscapes_regseg48_iou_test", metric_value=0.263, delta=0.05))
- @classmethod
- def _reached_goal_metric(cls, experiment_name: str, metric_value: float, delta: float):
- ckpt_dir = os.path.join(environment_config.PKG_CHECKPOINTS_DIR, experiment_name)
- sd = torch.load(os.path.join(ckpt_dir, "ckpt_best.pth"))
- metric_val_reached = sd["acc"].cpu().item()
- diff = abs(metric_val_reached - metric_value)
- print(
- "Goal metric value: " + str(metric_value) + ", metric value reached: " + str(metric_val_reached) + ",diff: " + str(diff) + ", delta: " + str(delta)
- )
- return diff <= delta
- @classmethod
- def tearDownClass(cls) -> None:
- # ERASE ALL THE FOLDERS THAT WERE CREATED DURING THIS TEST
- for folder in cls.experiment_names:
- ckpt_dir = os.path.join(environment_config.PKG_CHECKPOINTS_DIR, folder)
- if os.path.isdir(ckpt_dir):
- shutil.rmtree(ckpt_dir)
- if __name__ == "__main__":
- unittest.main()
|