Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#585 PLFM-3331 Register experiments with model name

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/plfm-3331_model_name_in_experiment

Training Recipes

We defined recipes to ensure that anyone can reproduce our results in the most simple way.

Setup

To run recipes you first need to clone the super-gradients repository:

git clone https://github.com/Deci-AI/super-gradients

You then need to move to the root of the clone project (where you find "requirements.txt" and "setup.py") and install super-gradients:

pip install -e .

Finally, append super-gradients to the python path: (Replace "YOUR-LOCAL-PATH" with the path to the downloaded repo)

export PYTHONPATH=$PYTHONPATH:<YOUR-LOCAL-PATH>/super-gradients/

How to run a recipe

The recipes are defined in .yaml format and we use the hydra library to allow you to easily customize the parameters. The basic basic syntax is as follow:

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=<CONFIG-NAME> dataset_params.data_dir=<PATH-TO-DATASET>

Note: this script needs to be launched from the root folder of super_gradients Note: if you stored your dataset in the path specified by the recipe you can drop "dataset_params.data_dir=".

Explore our recipes

You can find all of our recipes here. You will find information about the performance of a recipe as well as the command to execute it in the header of its config file.

Example: Training of YoloX Small on Coco 2017, using 8 GPU

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_s dataset_params.data_dir=/home/coco2017

List of commands

All the commands to launch the recipes described here are listed below. Please make to "dataset_params.data_dir=" if you did not store the dataset in the path specified by the recipe (as showed in the example above).

- Classification

Cifar10

resnet:

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cifar10_resnet +experiment_name=cifar10
ImageNet

efficientnet

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_efficientnet

mobilenetv2

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_mobilenetv2

mobilenetv3 small

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_mobilenetv3_small

mobilenetv3 large

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_mobilenetv3_large

regnetY200

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY200

regnetY400

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY400

regnetY600

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY600

regnetY800

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_regnetY architecture=regnetY800

repvgg

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_repvgg

resnet50

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_resnet50

resnet50_kd

python src/super_gradients/examples/train_from_kd_recipe_example/train_from_kd_recipe.py --config-name=imagenet_resnet50_kd

vit_base

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_vit_base

vit_large

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=imagenet_vit_large

- Detection

Coco2017

ssd_lite_mobilenet_v2

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_ssd_lite_mobilenet_v2

yolox_n

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_n

yolox_t

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_t

yolox_s

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_s

yolox_m

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_m

yolox_l

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_l

yolox_x

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_yolox architecture=yolox_x

- Segmentation

Cityscapes

DDRNet23

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_ddrnet

DDRNet23-Slim

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_ddrnet architecture=ddrnet_23_slim

RegSeg48

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_regseg48

STDC1-Seg50

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg50

STDC2-Seg50

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg50 architecture=stdc2_seg

STDC1-Seg75

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg75

STDC2-Seg75

python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cityscapes_stdc_seg75 external_checkpoint_path=<stdc2-backbone-pretrained-path> architecture=stdc2_seg
Discard
Tip!

Press p or to see the previous file or, n or to see the next file