Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#572 new generated docs

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-000_new_generated_docs
36 changed files with 357 additions and 2494 deletions
  1. 0
    23
      docs/_sources/generated/super_gradients.common.abstractions.rst.txt
  2. 0
    23
      docs/_sources/generated/super_gradients.common.auto_logging.rst.txt
  3. 0
    23
      docs/_sources/generated/super_gradients.common.aws_connection.rst.txt
  4. 0
    23
      docs/_sources/generated/super_gradients.common.data_connection.rst.txt
  5. 0
    23
      docs/_sources/generated/super_gradients.common.data_interface.rst.txt
  6. 0
    23
      docs/_sources/generated/super_gradients.common.data_types.rst.txt
  7. 0
    23
      docs/_sources/generated/super_gradients.common.decorators.rst.txt
  8. 0
    23
      docs/_sources/generated/super_gradients.common.environment.rst.txt
  9. 2
    4
      docs/_sources/index.rst.txt
  10. 0
    7
      docs/_sources/modules.rst.txt
  11. 0
    21
      docs/_sources/super_gradients.common.abstractions.rst.txt
  12. 0
    21
      docs/_sources/super_gradients.common.auto_logging.rst.txt
  13. 0
    29
      docs/_sources/super_gradients.common.aws_connection.rst.txt
  14. 0
    21
      docs/_sources/super_gradients.common.data_connection.rst.txt
  15. 0
    29
      docs/_sources/super_gradients.common.data_interface.rst.txt
  16. 0
    21
      docs/_sources/super_gradients.common.data_types.enum.rst.txt
  17. 0
    18
      docs/_sources/super_gradients.common.data_types.rst.txt
  18. 0
    37
      docs/_sources/super_gradients.common.decorators.rst.txt
  19. 0
    29
      docs/_sources/super_gradients.common.environment.rst.txt
  20. 33
    7
      docs/_sources/super_gradients.common.rst.txt
  21. 0
    10
      docs/_sources/super_gradients.training.datasets.classification_datasets.rst.txt
  22. 0
    21
      docs/_sources/super_gradients.training.datasets.dataset_interfaces.rst.txt
  23. 0
    37
      docs/_sources/super_gradients.training.datasets.detection_datasets.rst.txt
  24. 0
    80
      docs/_sources/super_gradients.training.datasets.rst.txt
  25. 0
    53
      docs/_sources/super_gradients.training.datasets.segmentation_datasets.rst.txt
  26. 0
    29
      docs/_sources/super_gradients.training.exceptions.rst.txt
  27. 0
    21
      docs/_sources/super_gradients.training.legacy.rst.txt
  28. 0
    101
      docs/_sources/super_gradients.training.losses.rst.txt
  29. 0
    45
      docs/_sources/super_gradients.training.metrics.rst.txt
  30. 0
    237
      docs/_sources/super_gradients.training.models.rst.txt
  31. 37
    3
      docs/_sources/super_gradients.training.rst.txt
  32. 0
    21
      docs/_sources/super_gradients.training.sg_model.rst.txt
  33. 0
    21
      docs/_sources/super_gradients.training.utils.optimizers.rst.txt
  34. 0
    149
      docs/_sources/super_gradients.training.utils.rst.txt
  35. 0
    965
      docs/_sources/user_guide.md.txt
  36. 285
    273
      docs/_sources/welcome.md.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  1. super\_gradients.common.abstractions
  2. ====================================
  3. .. automodule:: super_gradients.common.abstractions
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  1. super\_gradients.common.auto\_logging
  2. =====================================
  3. .. automodule:: super_gradients.common.auto_logging
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  1. super\_gradients.common.aws\_connection
  2. =======================================
  3. .. automodule:: super_gradients.common.aws_connection
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  1. super\_gradients.common.data\_connection
  2. ========================================
  3. .. automodule:: super_gradients.common.data_connection
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  1. super\_gradients.common.data\_interface
  2. =======================================
  3. .. automodule:: super_gradients.common.data_interface
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  1. super\_gradients.common.data\_types
  2. ===================================
  3. .. automodule:: super_gradients.common.data_types
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  1. super\_gradients.common.decorators
  2. ==================================
  3. .. automodule:: super_gradients.common.decorators
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  1. super\_gradients.common.environment
  2. ===================================
  3. .. automodule:: super_gradients.common.environment
Discard
@@ -20,10 +20,8 @@ Welcome to SuperGradients's documentation!
    super_gradients.training
    super_gradients.training
 
 
 .. toctree::
 .. toctree::
-   :maxdepth: 4
-   :caption: User Guide
-
-   user_guide
+.. :maxdepth: 4
+.. :caption: User Guide
 
 
 Indices and tables
 Indices and tables
 ==================
 ==================
Discard
1
2
3
4
5
6
7
  1. super_gradients
  2. ===============
  3. .. toctree::
  4. :maxdepth: 8
  5. super_gradients
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  1. super\_gradients.common.abstractions package
  2. ============================================
  3. Submodules
  4. ----------
  5. super\_gradients.common.abstractions.abstract\_logger module
  6. ------------------------------------------------------------
  7. .. automodule:: super_gradients.common.abstractions.abstract_logger
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. Module contents
  12. ---------------
  13. .. automodule:: super_gradients.common.abstractions
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  1. super\_gradients.common.auto\_logging package
  2. =============================================
  3. Submodules
  4. ----------
  5. super\_gradients.common.auto\_logging.auto\_logger module
  6. ---------------------------------------------------------
  7. .. automodule:: super_gradients.common.auto_logging.auto_logger
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. Module contents
  12. ---------------
  13. .. automodule:: super_gradients.common.auto_logging
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
  1. super\_gradients.common.aws\_connection package
  2. ===============================================
  3. Submodules
  4. ----------
  5. super\_gradients.common.aws\_connection.aws\_connector module
  6. -------------------------------------------------------------
  7. .. automodule:: super_gradients.common.aws_connection.aws_connector
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. super\_gradients.common.aws\_connection.aws\_secrets\_manager\_connector module
  12. -------------------------------------------------------------------------------
  13. .. automodule:: super_gradients.common.aws_connection.aws_secrets_manager_connector
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
  17. Module contents
  18. ---------------
  19. .. automodule:: super_gradients.common.aws_connection
  20. :members:
  21. :undoc-members:
  22. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  1. super\_gradients.common.data\_connection package
  2. ================================================
  3. Submodules
  4. ----------
  5. super\_gradients.common.data\_connection.s3\_connector module
  6. -------------------------------------------------------------
  7. .. automodule:: super_gradients.common.data_connection.s3_connector
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. Module contents
  12. ---------------
  13. .. automodule:: super_gradients.common.data_connection
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
  1. super\_gradients.common.data\_interface package
  2. ===============================================
  3. Submodules
  4. ----------
  5. super\_gradients.common.data\_interface.adnn\_model\_repository\_data\_interface module
  6. ---------------------------------------------------------------------------------------
  7. .. automodule:: super_gradients.common.data_interface.adnn_model_repository_data_interface
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. super\_gradients.common.data\_interface.dataset\_data\_interface module
  12. -----------------------------------------------------------------------
  13. .. automodule:: super_gradients.common.data_interface.dataset_data_interface
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
  17. Module contents
  18. ---------------
  19. .. automodule:: super_gradients.common.data_interface
  20. :members:
  21. :undoc-members:
  22. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  1. super\_gradients.common.data\_types.enum package
  2. ================================================
  3. Submodules
  4. ----------
  5. super\_gradients.common.data\_types.enum.deep\_learning\_task module
  6. --------------------------------------------------------------------
  7. .. automodule:: super_gradients.common.data_types.enum.deep_learning_task
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. Module contents
  12. ---------------
  13. .. automodule:: super_gradients.common.data_types.enum
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
  1. super\_gradients.common.data\_types package
  2. ===========================================
  3. Subpackages
  4. -----------
  5. .. toctree::
  6. :maxdepth: 4
  7. super_gradients.common.data_types.enum
  8. Module contents
  9. ---------------
  10. .. automodule:: super_gradients.common.data_types
  11. :members:
  12. :undoc-members:
  13. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
  1. super\_gradients.common.decorators package
  2. ==========================================
  3. Submodules
  4. ----------
  5. super\_gradients.common.decorators.deci\_logger module
  6. ------------------------------------------------------
  7. .. automodule:: super_gradients.common.decorators.deci_logger
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. super\_gradients.common.decorators.explicit\_params\_validator module
  12. ---------------------------------------------------------------------
  13. .. automodule:: super_gradients.common.decorators.explicit_params_validator
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
  17. super\_gradients.common.decorators.singleton module
  18. ---------------------------------------------------
  19. .. automodule:: super_gradients.common.decorators.singleton
  20. :members:
  21. :undoc-members:
  22. :show-inheritance:
  23. Module contents
  24. ---------------
  25. .. automodule:: super_gradients.common.decorators
  26. :members:
  27. :undoc-members:
  28. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
  1. super\_gradients.common.environment package
  2. ===========================================
  3. Submodules
  4. ----------
  5. super\_gradients.common.environment.env\_helpers module
  6. -------------------------------------------------------
  7. .. automodule:: super_gradients.common.environment.env_helpers
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. super\_gradients.common.environment.environment\_config module
  12. --------------------------------------------------------------
  13. .. automodule:: super_gradients.common.environment.environment_config
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
  17. Module contents
  18. ---------------
  19. .. automodule:: super_gradients.common.environment
  20. :members:
  21. :undoc-members:
  22. :show-inheritance:
Discard
@@ -9,35 +9,61 @@ Common package
    :undoc-members:
    :undoc-members:
    :show-inheritance:
    :show-inheritance:
 
 
-.. automodule:: super_gradients.auto_logging
+.. automodule:: super_gradients.common.auto_logging
    :members:
    :members:
    :undoc-members:
    :undoc-members:
    :show-inheritance:
    :show-inheritance:
 
 
-.. automodule:: super_gradients.aws_connection
+.. automodule:: super_gradients.common.abstraction
    :members:
    :members:
    :undoc-members:
    :undoc-members:
    :show-inheritance:
    :show-inheritance:
 
 
-.. automodule:: super_gradients.data_interface
+.. automodule:: super_gradients.common.data_connection
    :members:
    :members:
    :undoc-members:
    :undoc-members:
    :show-inheritance:
    :show-inheritance:
 
 
-.. automodule:: super_gradients.data_types
+
+.. automodule:: super_gradients.common.data_interface
+   :members:
+   :undoc-members:
+   :show-inheritance:
+
+.. automodule:: super_gradients.common.data_types
+   :members:
+   :undoc-members:
+   :show-inheritance:
+
+.. automodule:: super_gradients.common.decorators
+   :members:
+   :undoc-members:
+   :show-inheritance:
+
+.. automodule:: super_gradients.common.environment
+   :members:
+   :undoc-members:
+   :show-inheritance:
+
+.. automodule:: super_gradients.common.factories
+   :members:
+   :undoc-members:
+   :show-inheritance:
+
+.. automodule:: super_gradients.common.plugins
    :members:
    :members:
    :undoc-members:
    :undoc-members:
    :show-inheritance:
    :show-inheritance:
 
 
-.. automodule:: super_gradients.decorators
+.. automodule:: super_gradients.common.registry
    :members:
    :members:
    :undoc-members:
    :undoc-members:
    :show-inheritance:
    :show-inheritance:
 
 
-.. automodule:: super_gradients.environment
+.. automodule:: super_gradients.common.sg_loggers
    :members:
    :members:
    :undoc-members:
    :undoc-members:
    :show-inheritance:
    :show-inheritance:
 
 
 Module contents
 Module contents
----------------
+---------------
Discard
1
2
3
4
5
6
7
8
9
10
  1. super\_gradients.training.datasets.classification\_datasets package
  2. ===================================================================
  3. Module contents
  4. ---------------
  5. .. automodule:: super_gradients.training.datasets.classification_datasets
  6. :members:
  7. :undoc-members:
  8. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  1. super\_gradients.training.datasets.dataset\_interfaces package
  2. ==============================================================
  3. Submodules
  4. ----------
  5. super\_gradients.training.datasets.dataset\_interfaces.dataset\_interface module
  6. --------------------------------------------------------------------------------
  7. .. automodule:: super_gradients.training.datasets.dataset_interfaces.dataset_interface
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. Module contents
  12. ---------------
  13. .. automodule:: super_gradients.training.datasets.dataset_interfaces
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
  1. super\_gradients.training.datasets.detection\_datasets package
  2. ==============================================================
  3. Submodules
  4. ----------
  5. super\_gradients.training.datasets.detection\_datasets.coco\_detection module
  6. -----------------------------------------------------------------------------
  7. .. automodule:: super_gradients.training.datasets.detection_datasets.coco_detection
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. super\_gradients.training.datasets.detection\_datasets.detection\_dataset module
  12. --------------------------------------------------------------------------------
  13. .. automodule:: super_gradients.training.datasets.detection_datasets.detection_dataset
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
  17. super\_gradients.training.datasets.detection\_datasets.pascal\_voc\_detection module
  18. ------------------------------------------------------------------------------------
  19. .. automodule:: super_gradients.training.datasets.detection_datasets.pascal_voc_detection
  20. :members:
  21. :undoc-members:
  22. :show-inheritance:
  23. Module contents
  24. ---------------
  25. .. automodule:: super_gradients.training.datasets.detection_datasets
  26. :members:
  27. :undoc-members:
  28. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
  1. super\_gradients.training.datasets package
  2. ==========================================
  3. Subpackages
  4. -----------
  5. .. toctree::
  6. :maxdepth: 4
  7. super_gradients.training.datasets.classification_datasets
  8. super_gradients.training.datasets.dataset_interfaces
  9. super_gradients.training.datasets.detection_datasets
  10. super_gradients.training.datasets.segmentation_datasets
  11. Submodules
  12. ----------
  13. super\_gradients.training.datasets.all\_datasets module
  14. -------------------------------------------------------
  15. .. automodule:: super_gradients.training.datasets.all_datasets
  16. :members:
  17. :undoc-members:
  18. :show-inheritance:
  19. super\_gradients.training.datasets.auto\_augment module
  20. -------------------------------------------------------
  21. .. automodule:: super_gradients.training.datasets.auto_augment
  22. :members:
  23. :undoc-members:
  24. :show-inheritance:
  25. super\_gradients.training.datasets.data\_augmentation module
  26. ------------------------------------------------------------
  27. .. automodule:: super_gradients.training.datasets.data_augmentation
  28. :members:
  29. :undoc-members:
  30. :show-inheritance:
  31. super\_gradients.training.datasets.datasets\_conf module
  32. --------------------------------------------------------
  33. .. automodule:: super_gradients.training.datasets.datasets_conf
  34. :members:
  35. :undoc-members:
  36. :show-inheritance:
  37. super\_gradients.training.datasets.datasets\_utils module
  38. ---------------------------------------------------------
  39. .. automodule:: super_gradients.training.datasets.datasets_utils
  40. :members:
  41. :undoc-members:
  42. :show-inheritance:
  43. super\_gradients.training.datasets.mixup module
  44. -----------------------------------------------
  45. .. automodule:: super_gradients.training.datasets.mixup
  46. :members:
  47. :undoc-members:
  48. :show-inheritance:
  49. super\_gradients.training.datasets.sg\_dataset module
  50. -----------------------------------------------------
  51. .. automodule:: super_gradients.training.datasets.sg_dataset
  52. :members:
  53. :undoc-members:
  54. :show-inheritance:
  55. Module contents
  56. ---------------
  57. .. automodule:: super_gradients.training.datasets
  58. :members:
  59. :undoc-members:
  60. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  1. super\_gradients.training.datasets.segmentation\_datasets package
  2. =================================================================
  3. Submodules
  4. ----------
  5. super\_gradients.training.datasets.segmentation\_datasets.cityscape\_segmentation module
  6. ----------------------------------------------------------------------------------------
  7. .. automodule:: super_gradients.training.datasets.segmentation_datasets.cityscape_segmentation
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. super\_gradients.training.datasets.segmentation\_datasets.coco\_segmentation module
  12. -----------------------------------------------------------------------------------
  13. .. automodule:: super_gradients.training.datasets.segmentation_datasets.coco_segmentation
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
  17. super\_gradients.training.datasets.segmentation\_datasets.pascal\_aug\_segmentation module
  18. ------------------------------------------------------------------------------------------
  19. .. automodule:: super_gradients.training.datasets.segmentation_datasets.pascal_aug_segmentation
  20. :members:
  21. :undoc-members:
  22. :show-inheritance:
  23. super\_gradients.training.datasets.segmentation\_datasets.pascal\_voc\_segmentation module
  24. ------------------------------------------------------------------------------------------
  25. .. automodule:: super_gradients.training.datasets.segmentation_datasets.pascal_voc_segmentation
  26. :members:
  27. :undoc-members:
  28. :show-inheritance:
  29. super\_gradients.training.datasets.segmentation\_datasets.segmentation\_dataset module
  30. --------------------------------------------------------------------------------------
  31. .. automodule:: super_gradients.training.datasets.segmentation_datasets.segmentation_dataset
  32. :members:
  33. :undoc-members:
  34. :show-inheritance:
  35. Module contents
  36. ---------------
  37. .. automodule:: super_gradients.training.datasets.segmentation_datasets
  38. :members:
  39. :undoc-members:
  40. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
  1. super\_gradients.training.exceptions package
  2. ============================================
  3. Submodules
  4. ----------
  5. super\_gradients.training.exceptions.dataset\_exceptions module
  6. ---------------------------------------------------------------
  7. .. automodule:: super_gradients.training.exceptions.dataset_exceptions
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. super\_gradients.training.exceptions.sg\_model\_exceptions module
  12. -----------------------------------------------------------------
  13. .. automodule:: super_gradients.training.exceptions.sg_model_exceptions
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
  17. Module contents
  18. ---------------
  19. .. automodule:: super_gradients.training.exceptions
  20. :members:
  21. :undoc-members:
  22. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  1. super\_gradients.training.legacy package
  2. ========================================
  3. Submodules
  4. ----------
  5. super\_gradients.training.legacy.utils module
  6. ---------------------------------------------
  7. .. automodule:: super_gradients.training.legacy.utils
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. Module contents
  12. ---------------
  13. .. automodule:: super_gradients.training.legacy
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
  1. super\_gradients.training.losses package
  2. ========================================
  3. Submodules
  4. ----------
  5. super\_gradients.training.losses.all\_losses module
  6. ---------------------------------------------------
  7. .. automodule:: super_gradients.training.losses.all_losses
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. super\_gradients.training.losses.ddrnet\_loss module
  12. ----------------------------------------------------
  13. .. automodule:: super_gradients.training.losses.ddrnet_loss
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
  17. super\_gradients.training.losses.focal\_loss module
  18. ---------------------------------------------------
  19. .. automodule:: super_gradients.training.losses.focal_loss
  20. :members:
  21. :undoc-members:
  22. :show-inheritance:
  23. super\_gradients.training.losses.label\_smoothing\_cross\_entropy\_loss module
  24. ------------------------------------------------------------------------------
  25. .. automodule:: super_gradients.training.losses.label_smoothing_cross_entropy_loss
  26. :members:
  27. :undoc-members:
  28. :show-inheritance:
  29. super\_gradients.training.losses.ohem\_ce\_loss module
  30. ------------------------------------------------------
  31. .. automodule:: super_gradients.training.losses.ohem_ce_loss
  32. :members:
  33. :undoc-members:
  34. :show-inheritance:
  35. super\_gradients.training.losses.r\_squared\_loss module
  36. --------------------------------------------------------
  37. .. automodule:: super_gradients.training.losses.r_squared_loss
  38. :members:
  39. :undoc-members:
  40. :show-inheritance:
  41. super\_gradients.training.losses.shelfnet\_ohem\_loss module
  42. ------------------------------------------------------------
  43. .. automodule:: super_gradients.training.losses.shelfnet_ohem_loss
  44. :members:
  45. :undoc-members:
  46. :show-inheritance:
  47. super\_gradients.training.losses.shelfnet\_semantic\_encoding\_loss module
  48. --------------------------------------------------------------------------
  49. .. automodule:: super_gradients.training.losses.shelfnet_semantic_encoding_loss
  50. :members:
  51. :undoc-members:
  52. :show-inheritance:
  53. super\_gradients.training.losses.ssd\_loss module
  54. -------------------------------------------------
  55. .. automodule:: super_gradients.training.losses.ssd_loss
  56. :members:
  57. :undoc-members:
  58. :show-inheritance:
  59. super\_gradients.training.losses.yolo\_v3\_loss module
  60. ------------------------------------------------------
  61. .. automodule:: super_gradients.training.losses.yolo_v3_loss
  62. :members:
  63. :undoc-members:
  64. :show-inheritance:
  65. super\_gradients.training.losses.yolo\_v5\_loss module
  66. ------------------------------------------------------
  67. .. automodule:: super_gradients.training.losses.yolo_v5_loss
  68. :members:
  69. :undoc-members:
  70. :show-inheritance:
  71. Module contents
  72. ---------------
  73. .. automodule:: super_gradients.training.losses
  74. :members:
  75. :undoc-members:
  76. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
  1. super\_gradients.training.metrics package
  2. =========================================
  3. Submodules
  4. ----------
  5. super\_gradients.training.metrics.classification\_metrics module
  6. ----------------------------------------------------------------
  7. .. automodule:: super_gradients.training.metrics.classification_metrics
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. super\_gradients.training.metrics.detection\_metrics module
  12. -----------------------------------------------------------
  13. .. automodule:: super_gradients.training.metrics.detection_metrics
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
  17. super\_gradients.training.metrics.metric\_utils module
  18. ------------------------------------------------------
  19. .. automodule:: super_gradients.training.metrics.metric_utils
  20. :members:
  21. :undoc-members:
  22. :show-inheritance:
  23. super\_gradients.training.metrics.segmentation\_metrics module
  24. --------------------------------------------------------------
  25. .. automodule:: super_gradients.training.metrics.segmentation_metrics
  26. :members:
  27. :undoc-members:
  28. :show-inheritance:
  29. Module contents
  30. ---------------
  31. .. automodule:: super_gradients.training.metrics
  32. :members:
  33. :undoc-members:
  34. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
  1. super\_gradients.training.models package
  2. ========================================
  3. Submodules
  4. ----------
  5. super\_gradients.training.models.all\_architectures module
  6. ----------------------------------------------------------
  7. .. automodule:: super_gradients.training.models.all_architectures
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. super\_gradients.training.models.csp\_darknet53 module
  12. ------------------------------------------------------
  13. .. automodule:: super_gradients.training.models.csp_darknet53
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
  17. super\_gradients.training.models.darknet53 module
  18. -------------------------------------------------
  19. .. automodule:: super_gradients.training.models.darknet53
  20. :members:
  21. :undoc-members:
  22. :show-inheritance:
  23. super\_gradients.training.models.ddrnet module
  24. ----------------------------------------------
  25. .. automodule:: super_gradients.training.models.ddrnet
  26. :members:
  27. :undoc-members:
  28. :show-inheritance:
  29. super\_gradients.training.models.densenet module
  30. ------------------------------------------------
  31. .. automodule:: super_gradients.training.models.densenet
  32. :members:
  33. :undoc-members:
  34. :show-inheritance:
  35. super\_gradients.training.models.dpn module
  36. -------------------------------------------
  37. .. automodule:: super_gradients.training.models.dpn
  38. :members:
  39. :undoc-members:
  40. :show-inheritance:
  41. super\_gradients.training.models.efficientnet module
  42. ----------------------------------------------------
  43. .. automodule:: super_gradients.training.models.efficientnet
  44. :members:
  45. :undoc-members:
  46. :show-inheritance:
  47. super\_gradients.training.models.googlenet module
  48. -------------------------------------------------
  49. .. automodule:: super_gradients.training.models.googlenet
  50. :members:
  51. :undoc-members:
  52. :show-inheritance:
  53. super\_gradients.training.models.laddernet module
  54. -------------------------------------------------
  55. .. automodule:: super_gradients.training.models.laddernet
  56. :members:
  57. :undoc-members:
  58. :show-inheritance:
  59. super\_gradients.training.models.lenet module
  60. ---------------------------------------------
  61. .. automodule:: super_gradients.training.models.lenet
  62. :members:
  63. :undoc-members:
  64. :show-inheritance:
  65. super\_gradients.training.models.mobilenet module
  66. -------------------------------------------------
  67. .. automodule:: super_gradients.training.models.mobilenet
  68. :members:
  69. :undoc-members:
  70. :show-inheritance:
  71. super\_gradients.training.models.mobilenetv2 module
  72. ---------------------------------------------------
  73. .. automodule:: super_gradients.training.models.mobilenetv2
  74. :members:
  75. :undoc-members:
  76. :show-inheritance:
  77. super\_gradients.training.models.mobilenetv3 module
  78. ---------------------------------------------------
  79. .. automodule:: super_gradients.training.models.mobilenetv3
  80. :members:
  81. :undoc-members:
  82. :show-inheritance:
  83. super\_gradients.training.models.pnasnet module
  84. -----------------------------------------------
  85. .. automodule:: super_gradients.training.models.pnasnet
  86. :members:
  87. :undoc-members:
  88. :show-inheritance:
  89. super\_gradients.training.models.preact\_resnet module
  90. ------------------------------------------------------
  91. .. automodule:: super_gradients.training.models.preact_resnet
  92. :members:
  93. :undoc-members:
  94. :show-inheritance:
  95. super\_gradients.training.models.regnet module
  96. ----------------------------------------------
  97. .. automodule:: super_gradients.training.models.regnet
  98. :members:
  99. :undoc-members:
  100. :show-inheritance:
  101. super\_gradients.training.models.repvgg module
  102. ----------------------------------------------
  103. .. automodule:: super_gradients.training.models.repvgg
  104. :members:
  105. :undoc-members:
  106. :show-inheritance:
  107. super\_gradients.training.models.resnet module
  108. ----------------------------------------------
  109. .. automodule:: super_gradients.training.models.resnet
  110. :members:
  111. :undoc-members:
  112. :show-inheritance:
  113. super\_gradients.training.models.resnext module
  114. -----------------------------------------------
  115. .. automodule:: super_gradients.training.models.resnext
  116. :members:
  117. :undoc-members:
  118. :show-inheritance:
  119. super\_gradients.training.models.senet module
  120. ---------------------------------------------
  121. .. automodule:: super_gradients.training.models.senet
  122. :members:
  123. :undoc-members:
  124. :show-inheritance:
  125. super\_gradients.training.models.sg\_module module
  126. --------------------------------------------------
  127. .. automodule:: super_gradients.training.models.sg_module
  128. :members:
  129. :undoc-members:
  130. :show-inheritance:
  131. super\_gradients.training.models.shelfnet module
  132. ------------------------------------------------
  133. .. automodule:: super_gradients.training.models.shelfnet
  134. :members:
  135. :undoc-members:
  136. :show-inheritance:
  137. super\_gradients.training.models.shufflenet module
  138. --------------------------------------------------
  139. .. automodule:: super_gradients.training.models.shufflenet
  140. :members:
  141. :undoc-members:
  142. :show-inheritance:
  143. super\_gradients.training.models.shufflenetv2 module
  144. ----------------------------------------------------
  145. .. automodule:: super_gradients.training.models.shufflenetv2
  146. :members:
  147. :undoc-members:
  148. :show-inheritance:
  149. super\_gradients.training.models.ssd module
  150. -------------------------------------------
  151. .. automodule:: super_gradients.training.models.ssd
  152. :members:
  153. :undoc-members:
  154. :show-inheritance:
  155. super\_gradients.training.models.vgg module
  156. -------------------------------------------
  157. .. automodule:: super_gradients.training.models.vgg
  158. :members:
  159. :undoc-members:
  160. :show-inheritance:
  161. super\_gradients.training.models.yolov3 module
  162. ----------------------------------------------
  163. .. automodule:: super_gradients.training.models.yolov3
  164. :members:
  165. :undoc-members:
  166. :show-inheritance:
  167. super\_gradients.training.models.yolov5 module
  168. ----------------------------------------------
  169. .. automodule:: super_gradients.training.models.yolov5
  170. :members:
  171. :undoc-members:
  172. :show-inheritance:
  173. Module contents
  174. ---------------
  175. .. automodule:: super_gradients.training.models
  176. :members:
  177. :undoc-members:
  178. :show-inheritance:
Discard
@@ -7,13 +7,17 @@ Training package
 .. toctree::
 .. toctree::
    :maxdepth: 4
    :maxdepth: 4
    super_gradients.training
    super_gradients.training
+   super_gradients.training.dataloaders
    super_gradients.training.datasets
    super_gradients.training.datasets
    super_gradients.training.exceptions
    super_gradients.training.exceptions
+   super_gradients.training.kd_trainer
    super_gradients.training.legacy
    super_gradients.training.legacy
    super_gradients.training.losses
    super_gradients.training.losses
    super_gradients.training.metrics
    super_gradients.training.metrics
    super_gradients.training.models
    super_gradients.training.models
-   super_gradients.training.sg_model
+   super_gradients.training.sg_trainer
+   super_gradients.training.training_hyperparams
+   super_gradients.training.transforms
    super_gradients.training.utils
    super_gradients.training.utils
 
 
 super\_gradients.training module
 super\_gradients.training module
@@ -32,6 +36,14 @@ super\_gradients.training.datasets module
    :undoc-members:
    :undoc-members:
    :show-inheritance:
    :show-inheritance:
 
 
+super\_gradients.training.dataloaders module
+---------------------------------------
+
+.. automodule:: super_gradients.training.dataloaders
+   :members:
+   :undoc-members:
+   :show-inheritance:
+
 super\_gradients.training.exceptions module
 super\_gradients.training.exceptions module
 ---------------------------------------
 ---------------------------------------
 
 
@@ -40,6 +52,14 @@ super\_gradients.training.exceptions module
    :undoc-members:
    :undoc-members:
    :show-inheritance:
    :show-inheritance:
 
 
+super\_gradients.training.kd_trainer module
+---------------------------------------
+
+.. automodule:: super_gradients.training.kd_trainer
+   :members:
+   :undoc-members:
+   :show-inheritance:
+
 super\_gradients.training.legacy module
 super\_gradients.training.legacy module
 ---------------------------------------
 ---------------------------------------
 
 
@@ -75,11 +95,26 @@ super\_gradients.training.models module
 super\_gradients.training.sg\_model module
 super\_gradients.training.sg\_model module
 ---------------------------------------------------
 ---------------------------------------------------
 
 
-.. automodule:: super_gradients.training.sg_model
+.. automodule:: super_gradients.training.sg_trainer
    :members:
    :members:
    :undoc-members:
    :undoc-members:
    :show-inheritance:
    :show-inheritance:
 
 
+super\_gradients.training.training_hyperparams module
+---------------------------------------
+
+.. automodule:: super_gradients.training.training_hyperparams
+   :members:
+   :undoc-members:
+   :show-inheritance:
+
+super\_gradients.training.transforms module
+---------------------------------------
+
+.. automodule:: super_gradients.training.transforms
+   :members:
+   :undoc-members:
+   :show-inheritance:
 
 
 super\_gradients.training.utils module
 super\_gradients.training.utils module
 ---------------------------------------------------
 ---------------------------------------------------
@@ -91,4 +126,3 @@ super\_gradients.training.utils module
 
 
 Module contents
 Module contents
 ---------------
 ---------------
-
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  1. super\_gradients.training.sg\_model package
  2. ===========================================
  3. Submodules
  4. ----------
  5. super\_gradients.training.sg\_model.sg\_model module
  6. ----------------------------------------------------
  7. .. automodule:: super_gradients.training.sg_model.sg_model
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. Module contents
  12. ---------------
  13. .. automodule:: super_gradients.training.sg_model
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
  1. super\_gradients.training.utils.optimizers package
  2. ==================================================
  3. Submodules
  4. ----------
  5. super\_gradients.training.utils.optimizers.rmsprop\_tf module
  6. -------------------------------------------------------------
  7. .. automodule:: super_gradients.training.utils.optimizers.rmsprop_tf
  8. :members:
  9. :undoc-members:
  10. :show-inheritance:
  11. Module contents
  12. ---------------
  13. .. automodule:: super_gradients.training.utils.optimizers
  14. :members:
  15. :undoc-members:
  16. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  1. super\_gradients.training.utils package
  2. =======================================
  3. Subpackages
  4. -----------
  5. .. toctree::
  6. :maxdepth: 4
  7. super_gradients.training.utils.optimizers
  8. Submodules
  9. ----------
  10. super\_gradients.training.utils.callbacks module
  11. ------------------------------------------------
  12. .. automodule:: super_gradients.training.utils.callbacks
  13. :members:
  14. :undoc-members:
  15. :show-inheritance:
  16. super\_gradients.training.utils.checkpoint\_utils module
  17. --------------------------------------------------------
  18. .. automodule:: super_gradients.training.utils.checkpoint_utils
  19. :members:
  20. :undoc-members:
  21. :show-inheritance:
  22. super\_gradients.training.utils.detection\_utils module
  23. -------------------------------------------------------
  24. .. automodule:: super_gradients.training.utils.detection_utils
  25. :members:
  26. :undoc-members:
  27. :show-inheritance:
  28. super\_gradients.training.utils.distributed\_training\_utils module
  29. -------------------------------------------------------------------
  30. .. automodule:: super_gradients.training.utils.distributed_training_utils
  31. :members:
  32. :undoc-members:
  33. :show-inheritance:
  34. super\_gradients.training.utils.early\_stopping module
  35. ------------------------------------------------------
  36. .. automodule:: super_gradients.training.utils.early_stopping
  37. :members:
  38. :undoc-members:
  39. :show-inheritance:
  40. super\_gradients.training.utils.ema module
  41. ------------------------------------------
  42. .. automodule:: super_gradients.training.utils.ema
  43. :members:
  44. :undoc-members:
  45. :show-inheritance:
  46. super\_gradients.training.utils.export\_utils module
  47. ----------------------------------------------------
  48. .. automodule:: super_gradients.training.utils.export_utils
  49. :members:
  50. :undoc-members:
  51. :show-inheritance:
  52. super\_gradients.training.utils.get\_model\_stats module
  53. --------------------------------------------------------
  54. .. automodule:: super_gradients.training.utils.get_model_stats
  55. :members:
  56. :undoc-members:
  57. :show-inheritance:
  58. super\_gradients.training.utils.module\_utils module
  59. ----------------------------------------------------
  60. .. automodule:: super_gradients.training.utils.module_utils
  61. :members:
  62. :undoc-members:
  63. :show-inheritance:
  64. super\_gradients.training.utils.optimizer\_utils module
  65. -------------------------------------------------------
  66. .. automodule:: super_gradients.training.utils.optimizer_utils
  67. :members:
  68. :undoc-members:
  69. :show-inheritance:
  70. super\_gradients.training.utils.regularization\_utils module
  71. ------------------------------------------------------------
  72. .. automodule:: super_gradients.training.utils.regularization_utils
  73. :members:
  74. :undoc-members:
  75. :show-inheritance:
  76. super\_gradients.training.utils.segmentation\_utils module
  77. ----------------------------------------------------------
  78. .. automodule:: super_gradients.training.utils.segmentation_utils
  79. :members:
  80. :undoc-members:
  81. :show-inheritance:
  82. super\_gradients.training.utils.sg\_model\_utils module
  83. -------------------------------------------------------
  84. .. automodule:: super_gradients.training.utils.sg_model_utils
  85. :members:
  86. :undoc-members:
  87. :show-inheritance:
  88. super\_gradients.training.utils.ssd\_utils module
  89. -------------------------------------------------
  90. .. automodule:: super_gradients.training.utils.ssd_utils
  91. :members:
  92. :undoc-members:
  93. :show-inheritance:
  94. super\_gradients.training.utils.utils module
  95. --------------------------------------------
  96. .. automodule:: super_gradients.training.utils.utils
  97. :members:
  98. :undoc-members:
  99. :show-inheritance:
  100. super\_gradients.training.utils.weight\_averaging\_utils module
  101. ---------------------------------------------------------------
  102. .. automodule:: super_gradients.training.utils.weight_averaging_utils
  103. :members:
  104. :undoc-members:
  105. :show-inheritance:
  106. Module contents
  107. ---------------
  108. .. automodule:: super_gradients.training.utils
  109. :members:
  110. :undoc-members:
  111. :show-inheritance:
Discard
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
  1. **Contact Information**
  2. Email – [support@deci.ai](mailto:info@deci.ai)</br>
  3. Community Slack - [SG Slack](https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q)
  4. **Sasson Hugi Tower, Abba Hillel Silver Rd 12,** \
  5. **Ramat Gan, Israel**
  6. **Revision History**
  7. <table>
  8. <tr>
  9. <td>1.0.1
  10. </td>
  11. <td>December 2021
  12. </td>
  13. <td>Initial version
  14. </td>
  15. </tr>
  16. <tr>
  17. <td>1.0.2
  18. </td>
  19. <td>April 2022
  20. </td>
  21. <td>Pro tools, KD, ViT
  22. </td>
  23. </tr>
  24. </table>
  25. ## What is SuperGradients?
  26. The SuperGradients PyTorch-based training library provides a quick, simple and free open-source platform in which you can train your models using state of the art techniques.
  27. Who can use SuperGradients:
  28. * **Open Source Users** – **The SuperGradients can be used to easily train your models regardless of whether you ever have or ever will use the <span style="text-decoration:underline;">Deci platform</span>**.
  29. * **Deci Customers** – **The SuperGradients library can reproduce the training procedure performed by Deci for their optimized models**.
  30. ## Introducing the SuperGradients library
  31. The **SuperGradients** training library provides all of the scripts, example code and configurations required to demonstrate how to train your model on a dataset and to enable you to do it by yourself.
  32. SuperGradients comes as an easily installed Python package (pip install) that you can integrate into your code base in order to train your models.
  33. ## Installation
  34. **To install the SuperGradients library –**
  35. 1. Run the following command on your machine's terminal –
  36. ```
  37. pip install super_gradients
  38. ```
  39. ## Integrating Your Training Code - Complete Walkthrough
  40. Whether you are a Deci customer, or an open source SuperGradients user- it is likely that you already have your own training script, model, loss function implementation etc.
  41. In this section we present the modifications needed in order to launch your training using SuperGradients.
  42. #### Integrating Your Training Code: Main components:
  43. <span style="text-decoration:underline;">SgModel </span>- the main class in charge of training, testing, logging and basically everything that has to do with the execution of training code.
  44. <span style="text-decoration:underline;">DatasetInterface</span> - which is passed as an argument to the SgModel and wraps the training set, validation set and optionally a test set for the SgModel instance to work with accordingly.
  45. <span style="text-decoration:underline;">SgModel.net</span> -The network to be used for training/testing (of torch.nn.Module type).
  46. #### Integrating Your Training Code - Complete Walkthrough: Dataset
  47. The specified dataset interface class must inherit from **super_gradients.training.datasets.dataset_interfaces.dataset_interface**, which is where data augmentation and data loader configurations are defined.
  48. For instance, a dataset interface for Cifar10:
  49. ```
  50. import torchvision.datasets as datasets
  51. import torchvision.transforms as transforms
  52. from super_gradients.training import utils as core_utils
  53. from super_gradients.training.datasets.dataset_interfaces import DatasetInterface
  54. class UserDataset(DatasetInterface):
  55. def __init__(self, name="cifar10", dataset_params={}):
  56. super(UserDataset, self).__init__(dataset_params)
  57. self.dataset_name = name
  58. self.lib_dataset_params = {'mean': (0.4914, 0.4822, 0.4465), 'std': (0.2023, 0.1994, 0.2010)}
  59. crop_size = core_utils.get_param(self.dataset_params, 'crop_size', default_val=32)
  60. transform_train = transforms.Compose([
  61. transforms.RandomCrop(crop_size, padding=4),
  62. transforms.RandomHorizontalFlip(),
  63. transforms.ToTensor(),
  64. transforms.Normalize(self.lib_dataset_params['mean'], self.lib_dataset_params['std']),
  65. ])
  66. transform_val = transforms.Compose([
  67. transforms.ToTensor(),
  68. transforms.Normalize(self.lib_dataset_params['mean'], self.lib_dataset_params['std']),
  69. ])
  70. self.trainset = datasets.CIFAR10(root=self.dataset_params.dataset_dir, train=True, download=True,
  71. transform=transform_train)
  72. self.valset = datasets.CIFAR10(root=self.dataset_params.dataset_dir, train=False, download=True,
  73. transform=transform_val)
  74. ```
  75. Required parameters can be passed using the `python dataset_params` argument. When implementing a dataset interface, the`trainset` and `valset` attributes are required and must be initiated with a _torch.utils.data.Dataset_ type. These fields will cause the _SgModule_ instance to use them accordingly, such as during training, testing, and so on.
  76. #### Integrating Your Training Code - Complete Walkthrough: Model
  77. This is rather straightforward- the only requirement is that the model must be of torch.nn.Module type. In our case, a simple LeNet implementation (taken from https://github.com/icpm/pytorch-cifar10/blob/master/models/LeNet.py).
  78. <table>
  79. <tr>
  80. </tr>
  81. </table>
  82. ```
  83. import torch.nn as nn
  84. import torch.nn.functional as func
  85. class LeNet(nn.Module):
  86. def __init__(self):
  87. super(LeNet, self).__init__()
  88. self.conv1 = nn.Conv2d(3, 6, kernel_size=5)
  89. self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
  90. self.fc1 = nn.Linear(16*5*5, 120)
  91. self.fc2 = nn.Linear(120, 84)
  92. self.fc3 = nn.Linear(84, 10)
  93. def forward(self, x):
  94. x = func.relu(self.conv1(x))
  95. x = func.max_pool2d(x, 2)
  96. x = func.relu(self.conv2(x))
  97. x = func.max_pool2d(x, 2)
  98. x = x.view(x.size(0), -1)
  99. x = func.relu(self.fc1(x))
  100. x = func.relu(self.fc2(x))
  101. x = self.fc3(x)
  102. return x
  103. ```
  104. #### Integrating Your Training Code - Complete Walkthrough: Loss Function
  105. The loss function class must be of _torch.nn.module._LOSS_ type. For example, our _LabelSmoothingCrossEntropyLoss _implementation.
  106. ```
  107. import torch.nn as nn
  108. from super_gradients.training.losses.label_smoothing_cross_entropy_loss import cross_entropy
  109. class LabelSmoothingCrossEntropyLoss(nn.CrossEntropyLoss):
  110. def __init__(self, weight=None, ignore_index=-100, reduction='mean', smooth_eps=None, smooth_dist=None,
  111. from_logits=True):
  112. super(LabelSmoothingCrossEntropyLoss, self).__init__(weight=weight,
  113. ignore_index=ignore_index, reduction=reduction)
  114. self.smooth_eps = smooth_eps
  115. self.smooth_dist = smooth_dist
  116. self.from_logits = from_logits
  117. def forward(self, input, target, smooth_dist=None):
  118. if smooth_dist is None:
  119. smooth_dist = self.smooth_dist
  120. loss = cross_entropy(input, target, weight=self.weight, ignore_index=self.ignore_index,
  121. reduction=self.reduction, smooth_eps=self.smooth_eps,
  122. smooth_dist=smooth_dist, from_logits=self.from_logits)
  123. return loss
  124. ```
  125. **Important –** _forward(...)_ may return a (loss, loss_items) tuple instead of just a single item (i.e loss), where –
  126. _loss_ is the tensor used for backprop, meaning what your original loss function returns.
  127. _loss_items_ must be a tensor of shape (n_items) that is composed of values that are computed during the forward pass, so that it can be logged over the entire epoch.
  128. For example, the loss itself should always be logged. Another example is a scenario where the computed loss is the sum of a few components. These entries should be logged in loss_items.
  129. During training, set the _<span style="text-decoration:underline;">loss_logging_items_names</span>_ parameter in _<span style="text-decoration:underline;">training_params</span> _to be a list of strings of length _n_items_, whose ith element is the name of the ith entry in loss_items. In this way, each item will be logged, rendered and monitored in TensorBoard, thus saving model checkpoints accordingly.
  130. Because running logs save the loss_items in some internal state. It is therefore recommended that loss_items be detached from their computational graph for memory efficiency.
  131. #### Integrating Your Training Code - Complete Walkthrough: Metrics
  132. The metrics objects to be logged during training must be of torchmetrics.Metric type. For more information on how to use torchmetric.Metric objects and implement your own metrics. see https://torchmetrics.readthedocs.io/en/latest/pages/overview.html.
  133. During training, the metric's update is called with the model's raw outputs and raw targets. Therefore, any processing of the two must be taken into account and applied in the _update_.
  134. Training works out of the box with any of the module torchmetrics (full list in [https://torchmetrics.readthedocs.io/en/latest/references/modules.html](https://torchmetrics.readthedocs.io/en/latest/references/modules.html)). Additional metrics implementations such as mean average precision for object detection can be found at _super_gradients.training.metrics_)
  135. ```
  136. import torchmetrics
  137. import torch
  138. class Accuracy(torchmetrics.Accuracy):
  139. def __init__(self, dist_sync_on_step=False):
  140. super().__init__(dist_sync_on_step=dist_sync_on_step, top_k=1)
  141. def update(self, preds: torch.Tensor, target: torch.Tensor):
  142. super().update(preds=preds.softmax(1), target=target)
  143. class Top5(torchmetrics.Accuracy):
  144. def __init__(self, dist_sync_on_step=False):
  145. super().__init__(dist_sync_on_step=dist_sync_on_step, top_k=5)
  146. def update(self, preds: torch.Tensor, target: torch.Tensor):
  147. super().update(preds=preds.softmax(1), target=target)
  148. ```
  149. #### Integrating Your Training Code- Complete Walkthrough: Training script
  150. We instantiate an SgModel and a UserDatasetInterface, then call connect_dataset_interface which will initialize the dataloaders and pass additional dataset parameters to the SgModel instance.
  151. ```
  152. from super_gradients.training import SgModel
  153. sg_model = SgModel(experiment_name='LeNet_cifar10_example')
  154. dataset_params = {"batch_size": 256}
  155. dataset = UserDataset(dataset_params)
  156. sg_model.connect_dataset_interface(dataset)
  157. ```
  158. **Now, we pass a LeNet instance we defined above to the SgModel:**
  159. ```
  160. network = LeNet()
  161. sg_model.build_model(network)
  162. ```
  163. **Next, we define metrics in order to evaluate our model.**
  164. ```
  165. from super_gradients.training.metrics import Accuracy, Top5
  166. train_metrics_list = [Accuracy(), Top5()]
  167. valid_metrics_list = [Accuracy(), Top5()]
  168. ```
  169. Initializing the loss, and specifying training parameters
  170. ```
  171. train_params = {"max_epochs": 250,
  172. "lr_updates": [100, 150, 200],
  173. "lr_decay_factor": 0.1,
  174. "lr_mode": "step",
  175. "lr_warmup_epochs": 0,
  176. "initial_lr": 0.1,
  177. "loss": LabelSmoothingCrossEntropyLoss(),
  178. "criterion_params": {},
  179. "optimizer": "SGD",
  180. "optimizer_params": {"weight_decay": 1e-4, "momentum":0.9},
  181. "launch_tensorboard": False,
  182. "train_metrics_list": train_metrics_list,
  183. "valid_metrics_list": valid_metrics_list,
  184. "metric_to_watch": "Accuracy",
  185. "greater_metric_to_watch_is_better": True}
  186. sg_model.train(train_params)
  187. ```
  188. ##### Training Parameter Notes:
  189. * _<span style="text-decoration:underline;">loss_logging_items_names</span> _parameter – Refers to the single item returned in _loss_items_ in our loss function described above.
  190. * _<span style="text-decoration:underline;">metric_to_watch</span>_ – Is the model’s metric that determines the checkpoint to be saved. In our example, this parameter is set to _Accuracy_, and can be set to any of the following:
  191. * A metric name (str) of one of the metric objects from the _valid_metrics_lis_t.
  192. * A _metric_name_ that represents a metric that appears in _valid_metrics_list_ and has an attribute _component_names_. _component_names_ is a list that refers to the names of each entry in the output metric (torch tensor of size n).
  193. * One of the _loss_logging_items_names_, such as one that corresponds to an item returned during the loss function's forward pass as discussed earlier.
  194. * _<span style="text-decoration:underline;">greater_metric_to_watch_is_better flag </span>_– Determines when to save a model's checkpoint according to the value of the `metric_to_watch`.
  195. ## Training Parameters
  196. The following is a description of all the parameters passed in _training_params _when _<span style="text-decoration:underline;">train() </span>_is called.
  197. `max_epochs`: int
  198. Number of epochs to run during training.
  199. `lr_updates`: list(int)
  200. List of fixed epoch numbers to perform learning rate updates when `lr_mode='step'`.
  201. `lr_decay_factor`: float
  202. Decay factor to apply to the learning rate at each update when _lr_mode='step'_.
  203. `lr_mode`: str
  204. Learning rate scheduling policy, one of ['step','poly','cosine','function'].
  205. * 'step' refers to constant updates of epoch numbers passed through `lr_updates`.
  206. * 'cosine' refers to Cosine Annealing policy as described in https://arxiv.org/abs/1608.03983.
  207. * 'poly' refers to polynomial decrease, such as in each epoch iteration `self.lr = self.initial_lr * pow((1.0 - (current_iter / max_iter)), 0.9)`
  208. * 'function' refers to a user defined learning rate scheduling function, that is passed through `lr_schedule_function`.
  209. `lr_schedule_function`: Union[callable,None]
  210. Learning rate scheduling function to be used when `lr_mode` is 'function'.
  211. `lr_warmup_epochs`: int (default=0)
  212. Number of epochs for learning rate warm up. For more information, you may refer to https://arxiv.org/pdf/1706.02677.pdf (Section 2.2).
  213. `cosine_final_lr_ratio`: float (default=0.01)
  214. Final learning rate ratio (only relevant when `lr_mode`='cosine'). The cosine starts from initial_lr and reaches initial_lr * cosine_final_lr_ratio in the last epoch.
  215. `inital_lr`: float
  216. Initial learning rate.
  217. `loss`: Union[nn.module, str]
  218. Loss function to be used for training.
  219. One of super_gradients's built in options:
  220. "cross_entropy": LabelSmoothingCrossEntropyLoss,
  221. "mse": MSELoss,
  222. "r_squared_loss": RSquaredLoss,
  223. "detection_loss": YoLoV3DetectionLoss,
  224. "shelfnet_ohem_loss": ShelfNetOHEMLoss,
  225. "shelfnet_se_loss": ShelfNetSemanticEncodingLoss,
  226. "yolo_v5_loss": YoLoV5DetectionLoss,
  227. "ssd_loss": SSDLoss,
  228. or user defined nn.module loss function.
  229. **Important –** _forward(...)_ should return a (loss, loss_items) tuple, where –
  230. * _loss_ is the tensor used for backprop, meaning what your original loss function returns
  231. * _loss_items_ must be a tensor of shape (n_items) of values computed during the forward pass, so that they can be logged over the entire epoch.
  232. For example, the loss itself should always be logged. Another example is a scenario where the computed loss is the sum of a few components. These entries should be returned in loss_items.
  233. During training, set the _loss_logging_items_names_ parameter in _training_params _to be a list of strings of length _n_items_, whose ith element is the name of the ith entry in loss_items. In this way, each item will be logged, rendered on TensorBoard and monitored, thus saving model checkpoints accordingly.
  234. Running logs saves the loss_items in some internal state. It is therefore recommended that loss_items be detached from their computational graph for memory efficiency.
  235. `optimizer`: str
  236. Optimization algorithm. One of ['Adam','SGD','RMSProp'] corresponding to the torch.optim optimzer implementations.
  237. `criterion_params`: dict
  238. Loss function parameters.
  239. `optimizer_params`: dict
  240. Optimizer parameters. You may refer to https://pytorch.org/docs/stable/optim.html for the full list of the parameters for each optimizer.
  241. `train_metrics_list`: list(torchmetrics.Metric)
  242. Metrics to log during training. You may refer to [https://torchmetrics.rtfd.io/en/latest/](https://torchmetrics.rtfd.io/en/latest/), for more information about TorchMetrics.
  243. `valid_metrics_list`: list(torchmetrics.Metric)
  244. Metrics to log during validation/testing. You may refer to [https://torchmetrics.rtfd.io/en/latest/](https://torchmetrics.rtfd.io/en/latest/), for more information about TorchMetrics.
  245. `loss_logging_items_names`: list(str)
  246. The list of names/titles for the outputs returned from the loss function’s forward pass. These names are used to log their values.
  247. **Note – **The loss function should return the tuple (loss, loss_items).
  248. `metric_to_watch`: str (default="Accuracy")
  249. Specifies the metric according to which the model checkpoint is saved. It can be set to any of the following:
  250. * A metric name (str) of one of the metric objects from the valid_metrics_list
  251. * A "metric_name" to be used if any metric in the valid_metrics_list has an attribute component_names, which is a list referring to the names of each entry in the output metric (torch tensor of size n).
  252. * One of the "loss_logging_items_names" `that` corresponds to an item to be returned during the loss function's forward pass.
  253. At the end of each epoch, if a new best _metric_to_watch _value is achieved, the model’s checkpoint is saved in YOUR_PYTHON_PATH/checkpoints/ckpt_best.pth.
  254. `greater_metric_to_watch_is_better`: bool
  255. Determines when to save a model's checkpoint according to the value of the` metric_to_watch:`
  256. * _True: _A model’s checkpoint is saved when the model achieves the highest metric_to_watch.
  257. * _False:_ A model’s checkpoint is saved when the model achieves the lowest metric_to_watch.
  258. `ema`: bool (default=False)
  259. Specifies whether to use Model Exponential Moving Average. You may refer to https://github.com/rwightman/pytorch-image-models ema implementation), for more information.
  260. `batch_accumulate`: int (default=1)
  261. Number of batches to accumulate before every backward pass.
  262. `ema_params`: dict
  263. Parameters for the ema model.
  264. `zero_weight_decay_on_bias_and_bn`: bool (default=False)
  265. Specifies whether to apply weight decay on batch normalization parameters or not.
  266. `load_opt_params`: bool (default=True)
  267. Specifies whether to load the optimizers parameters (as well) when loading a model's checkpoint.
  268. `run_validation_freq`: int (default=1)
  269. The frequency at which validation is performed during training. This means that the validation is run every `run_validation_freq` epochs.
  270. `save_model`: bool (default=True)
  271. Specifies whether to save the model’s checkpoints.
  272. `launch_tensorboard`: bool (default=False)
  273. Specifies whether to launch a TensorBoard process.
  274. `tb_files_user_prompt`: bool
  275. Displays the TensorBoard deletion user prompt.
  276. `silent_mode`: bool
  277. Deactivates the printouts.
  278. `mixed_precision`: bool
  279. Specifies whether to use mixed precision or not.
  280. `tensorboard_port`: int, None (default=None)
  281. Specific port number for the TensorBoard to use when launched (when set to None, some free port number will be used).
  282. `save_ckpt_epoch_list`: list(int) (default=[])
  283. Specifies the list of fixed epoch indices in which to save checkpoints.
  284. `average_best_models`: bool (default=False)
  285. If True, a snapshot dictionary file and the average model will be saved / updated at every epoch and only evaluated after the training has completed. The snapshot file will only be deleted upon completing the training. The snapshot dict will be managed on the CPU.
  286. `save_tensorboard_to_s3`: bool (default=False)
  287. If True, saves the TensorBoard in S3.
  288. `precise_bn`: bool (default=False)
  289. Whether to use precise_bn calculation during the training.
  290. `precise_bn_batch_size`: int (default=None)
  291. The effective batch size we want to calculate the batchnorm on. For example, if we are training a model on 8 gpus, with a batch of 128 on each gpu, a good rule of thumb would be to give it 8192 (ie: effective_batch_size * num_gpus = batch_per_gpu * m_gpus * num_gpus). If precise_bn_batch_size is not provided in the training_params, the latter heuristic will be taken.
  292. `seed` : int (default=42)
  293. Random seed to be set for torch, numpy, and random. When using DDP each process will have it's seed set to seed + rank.
  294. `log_installed_packages`: bool (default=False)
  295. When set, the list of all installed packages (and their versions) will be written to the tensorboard and logfile (useful when trying to reproduce results).
  296. `dataset_statistics`:: bool (default=False)
  297. Enable a statistic analysis of the dataset. If set to True the dataset will be analyzed and a report will be added to the tensorboard along with some sample images from the dataset. Currently only detection datasets are supported for analysis.
  298. `save_full_train_log` : bool (default=False)
  299. When set, a full log (of all super_gradients modules, including uncaught exceptions from any other module) of the training will be saved in the checkpoint directory under full_train_log.log
  300. ## Logs and Checkpoints
  301. The model’s weights, logs and tensorboards are saved in _"YOUR_PYTHONPATH"/ checkpoints/”YOUR_EXPERIMENT_NAME” _. (In our walkthrough example, _”YOUR_EXPERIMENT_NAME” _ is _user_model_training)_.
  302. You can also connect your training logs into Weights and Biases (WandB) assuming you have an WandB account (go to connection to [professional tools](#professional-tools-integration))
  303. **To watch training progress –**
  304. **1st option:**
  305. 1. Open a terminal.
  306. 2. Navigate to _"YOUR_LOCAL_PATH_TO_super_gradients_PACKAGE"/ _and run ``tensorboard --logdir checkpoints --bind_all`.
  307. The message `TensorBoard 2.4.1 at http://localhost:XXXX/` appears.
  308. 3. Follow the link in this message to see the progress of the training.
  309. **2nd option:**
  310. Set the “launch_tensorboard_process” flag in your training_params passed to SgModel.train(...), and follow instructions displayed in the shell.
  311. * **To resume training –**
  312. When building the network- call SgModel.build_model(...arch_params={'load_checkpoint'True...}). Doing so, will load the network’s weights, as well as any relevant information for resuming training (monitored metric values, optimizer states, etc) with the latest checkpoint. For more advanced usage see SgModel.build_model docs in code.
  313. * **Checkpoint structure – state_dict (see [https://pytorch.org/tutorials/beginner/saving_loading_models.html](https://pytorch.org/tutorials/beginner/saving_loading_models.html) for more information regarding state_dicts) with the following keys:**
  314. **-”net”- The network’s state_dict.**
  315. **-”acc”- The value of `metric_to_watch` from training.**
  316. **-”epoch”- Last epoch performed before saving this checkpoint.**
  317. **-”ema_net” [Optionall, exists if training was performed with EMA] -** **The state dict of the EMA net.**
  318. **-”optimizer_state_dict”- Optimizer’s state dict from training.**
  319. **-”scaler_state_dict”- Gradient scalar state_dict from training.**
  320. ## Dataset Parameters
  321. dataset_params argument passed to SgModel.build_model().
  322. `batch_size`: int (default=64)
  323. Number of examples per batch for training. Large batch sizes are recommended.
  324. `test_batch_size`: int (default=200)
  325. Number of examples per batch for test/validation. Large batch sizes are recommended.
  326. `dataset_dir`: str (default="./data/")
  327. Directory location for the data. Data will be downloaded to this directory when received from a remote URL.
  328. `s3_link`: str (default=None)
  329. The remote s3 link from which to download the data (optional).
  330. ## Network Architectures
  331. The following architectures are implemented in SuperGradients’ code, and can be initialized by passing their name (i.e string) to SgModel.build_model easily.
  332. For example:
  333. ```
  334. sg_model = SgModel("resnet50_experiment")
  335. sg_model.build_model(architecture="resnet50")
  336. ```
  337. Will initialize a resnet50 and set it to be sg_model’s network attribute, which will be used for training.
  338. **'resnet18',**
  339. **'resnet34',**
  340. **'resnet50_3343',**
  341. **'resnet50',**
  342. **'resnet101',**
  343. **'resnet152',**
  344. **'resnet18_cifar',**
  345. **'custom_resnet',**
  346. **'custom_resnet50',**
  347. **'custom_resnet_cifar',**
  348. **'custom_resnet50_cifar',**
  349. **'mobilenet_v2',**
  350. **'mobile_net_v2_135',**
  351. **'custom_mobilenet_v2',**
  352. **'mobilenet_v3_large',**
  353. **'mobilenet_v3_small',**
  354. **'mobilenet_v3_custom',**
  355. **'yolo_v3',**
  356. **'tiny_yolo_v3',**
  357. **'custom_densenet',**
  358. **'densenet121',**
  359. **'densenet161',**
  360. **'densenet169',**
  361. **'densenet201',**
  362. **'shelfnet18',**
  363. **'shelfnet34',**
  364. **'shelfnet50_3343',**
  365. **'shelfnet50',**
  366. **'shelfnet101',**
  367. **'shufflenet_v2_x0_5',**
  368. **'shufflenet_v2_x1_0',**
  369. **'shufflenet_v2_x1_5',**
  370. **'shufflenet_v2_x2_0',**
  371. **'shufflenet_v2_custom5',**
  372. **'darknet53',**
  373. **'csp_darknet53',**
  374. **'resnext50',**
  375. **'resnext101',**
  376. **'googlenet_v1',**
  377. **'efficientnet_b0',**
  378. **'efficientnet_b1',**
  379. **'efficientnet_b2',**
  380. **'efficientnet_b3',**
  381. **'efficientnet_b4',**
  382. **'efficientnet_b5',**
  383. **'efficientnet_b6',**
  384. **'efficientnet_b7',**
  385. **'efficientnet_b8',**
  386. **'efficientnet_l2',**
  387. **'CustomizedEfficientnet',**
  388. **'regnetY200',**
  389. **'regnetY400',**
  390. **'regnetY600',**
  391. **'regnetY800',**
  392. **'custom_regnet',**
  393. **'nas_regnet',**
  394. **'yolo_v5s',**
  395. **'yolo_v5m',**
  396. **'yolo_v5l',**
  397. **'yolo_v5x',**
  398. **'custom_yolov5',**
  399. **'ssd_mobilenet_v1',**
  400. **'ssd_lite_mobilenet_v2',**
  401. **'repvgg_a0',**
  402. **'repvgg_a1',**
  403. **'repvgg_a2',**
  404. **'repvgg_b0',**
  405. **'repvgg_b1',**
  406. **'repvgg_b2',**
  407. **'repvgg_b3',**
  408. **'repvgg_d2se',**
  409. **'repvgg_custom',**
  410. **'ddrnet_23',**
  411. **'ddrnet_23_slim',**
  412. **'laddernet_50',**
  413. **'laddernet_50_3433',**
  414. **'laddernet_101',**
  415. **'regseg_48',**
  416. **'regseg_53',**
  417. **'shelfnet18_LW',**
  418. **'shelfnet34_LW',**
  419. **'shelfnet53_3343',**
  420. **'shelfnet_50',**
  421. **'shelfnet_101',**
  422. **'custom_stdc',**
  423. **'stdc_1',**
  424. **'stdc_2'**
  425. ## Pretrained Models
  426. Classification models
  427. | Model | Dataset | Resolution | Top-1 | Top-5 | Latency (HW)*<sub>T4</sub> | Latency (Production)**<sub>T4</sub> |Latency (HW)*<sub>Jetson Xavier NX</sub> | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub> |
  428. |------------ | ------ | ---------- |----------- | ----------- | ----------- |---------- |----------- | ----------- | :------: |
  429. | EfficientNet B0 | ImageNet | 224x224 | 77.62 | 93.49 |**0.93ms** |**1.38ms** | **-** * |**-**|**3.44ms** |
  430. | RegNet Y200 | ImageNet |224x224 | 70.88 | 89.35 |**0.63ms** | **1.08ms** | **2.16ms** |**2.47ms**|**2.06ms** |
  431. | RegNet Y400 | ImageNet |224x224 | 74.74 | 91.46 |**0.80ms** | **1.25ms** |**2.62ms** |**2.91ms** |**2.87ms** |
  432. | RegNet Y600 | ImageNet |224x224 | 76.18 | 92.34 |**0.77ms** | **1.22ms** |**2.64ms** |**2.93ms** |**2.39ms** |
  433. | RegNet Y800 | ImageNet |224x224 | 77.07 | 93.26 |**0.74ms** | **1.19ms** |**2.77ms** |**3.04ms** |**2.81ms** |
  434. | ResNet 18 | ImageNet |224x224 | 70.6 | 89.64 |**0.52ms** | **0.95ms** |**2.01ms**|**2.30ms** |**4.56ms** |
  435. | ResNet 34 | ImageNet |224x224 | 74.13 | 91.7 |**0.92ms** |**1.34ms** |**3.57ms**|**3.87ms** | **7.64ms** |
  436. | ResNet 50 | ImageNet |224x224 | 79.47 | 93.0 |**1.03ms** | **1.44ms** | **4.78ms**|**5.10ms** |**9.25ms** |
  437. | MobileNet V3_large-150 epochs | ImageNet |224x224 | 73.79 | 91.54 |**0.67ms** | **1.11ms** |**2.42ms** |**2.71ms** |**1.76ms** |
  438. | MobileNet V3_large-300 epochs | ImageNet |224x224 | 74.52 | 91.92 |**0.67ms** | **1.11ms** |**2.42ms** |**2.71ms** |**1.76ms** |
  439. | MobileNet V3_small | ImageNet |224x224 |67.45 | 87.47 |**0.55ms** | **0.96ms** |**2.01ms** *|**2.35ms** |**1.06ms** |
  440. | MobileNet V2_w1 | ImageNet |224x224 | 73.08 | 91.1 |**0.46 ms**| **0.89ms** |**1.65ms** *|**1.90ms** | **1.56ms** |
  441. > **NOTE:** <br/>
  442. > - Latency (HW)* - Hardware performance (not including IO)<br/>
  443. > - Latency (Production)** - Production Performance (including IO)
  444. > - Performance measured for T4 and Jetson Xavier NX with TensorRT, using FP16 precision and batch size 1
  445. > - Performance measured for Cascade Lake CPU with OpenVINO, using FP16 precision and batch size 1
  446. Object Detection models
  447. | Model | Dataset | Resolution | mAP<sup>val<br>0.5:0.95 | Latency (HW)*<sub>T4</sub> | Latency (Production)**<sub>T4</sub> |Latency (HW)*<sub>Jetson Xavier NX</sub> | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub> |
  448. |------------- |------ | ---------- |------ | -------- |------ | ---------- |------ | :------: |
  449. | YOLOv5 nano | COCO |640x640 |27.7 |**1.48ms** |**5.43ms**|**9.28ms** |**17.44ms** |**21.71ms**|
  450. | YOLOv5 small | COCO |640x640 |37.3 |**2.29ms** |**6.14ms**|**14.31ms** |**22.50ms** |**34.10ms**|
  451. | YOLOv5 medium| COCO |640x640 |45.2 |**4.60ms** |**8.10ms**|**26.76ms** |**34.95ms** |**65.86ms**|
  452. | YOLOv5 large | COCO |640x640 |48.0 |**7.20ms** |**10.28ms**|**43.89ms** |**51.92ms** |**122.97ms**|
  453. > **NOTE:** <br/>
  454. > - Latency (HW)* - Hardware performance (not including IO)<br/>
  455. > - Latency (Production)** - Production Performance (including IO)
  456. > - Latency performance measured for T4 and Jetson Xavier NX with TensorRT, using FP16 precision and batch size 1
  457. > - Latency performance measured for Cascade Lake CPU with OpenVINO, using FP16 precision and batch size 1
  458. Semantic Segmentation models
  459. | Model | Dataset | Resolution | mIoU | Latency b1<sub>T4</sub> | Latency b1<sub>T4</sub> including IO |
  460. |--------------------- |------ | ---------- | ------ | -------- | :------: |
  461. | DDRNet 23 | Cityscapes |1024x2048 |78.65 |**7.62ms** |**25.94ms**|
  462. | DDRNet 23 slim | Cityscapes |1024x2048 |76.6 |**3.56ms** |**22.80ms**|
  463. | STDC 1-Seg50 | Cityscapes | 512x1024 |74.36 |**2.83ms** |**12.57ms**|
  464. | STDC 1-Seg75 | Cityscapes | 768x1536 |76.87 |**5.71ms** |**26.70ms**|
  465. | STDC 2-Seg50 | Cityscapes | 512x1024 |75.27 |**3.74ms** |**13.89ms**
  466. | STDC 2-Seg75 | Cityscapes | 768x1536 |78.93 |**7.35ms** |**28.18ms**|
  467. | RegSeg (exp48) | Cityscapes | 1024x2048 |78.15 |**13.09ms** |**41.88ms**|
  468. | Larger RegSeg (exp53) | Cityscapes | 1024x2048 |79.2|**24.82ms** |**51.87ms**|
  469. | ShelfNet LW 34 | COCO Segmentation (21 classes from PASCAL including background) |512x512 |65.1 |**-** |**-** |
  470. > **NOTE:** Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency), and not including IO
  471. <br></br>
  472. Example- how to load a pretrained model:
  473. ```
  474. sg_model = SgModel("resnet50_experiment")
  475. sg_model.build_model(architecture="resnet50",
  476. arch_params={"pretrained_weights": "imagenet", "num_classes": 1000}
  477. )
  478. ```
  479. ## How To Reproduce Our Training Recipes
  480. The training recipes for the pretrained models are completely visible for the SuperGradients’ users and can be found under “_YOUR_LOCAL_PATH_TO_SUPER_GRADIENTS_PACKAGE"/ examples/{DATASET_NAME}_{ARCHITECTURE_NAME}_example. _
  481. _The corresponding YAML configuration files can be found under _“_YOUR_LOCAL_PATH_TO_SUPER_GRADIENTS_PACKAGE"/conf/{DATASET_NAME}_{ARCHITECTURE_NAME}_conf _
  482. The configuration files include the specific instructions on how to run the training recipes for reproducibility, as well as links to our tensorboards and logs from their training. Additional information regarding training time, metric scores on different configurations can be found in the configuration files as comments as well.
  483. <br></br>
  484. Example for how to start training with just 1 command line
  485. ```
  486. python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800 dataset_interface.data_dir=<YOUR_Imagenet_LOCAL_PATH> ckpt_root_dir=<CHEKPOINT_DIRECTORY>
  487. ```
  488. ## Professional Tools Integration
  489. ### Weights and Biases
  490. WandB can be though of an “extended” TensorBoard, where you can manage experiments, create reports, upload files, etc.
  491. #### Setting-up the environment
  492. 1. Go to your WandB settings, and create an API Key
  493. 2. In the machine, run `pip install wandb`
  494. 3. Once WandB is installed, run `wandb login` and use your username and the generated key. There should be `.netrc` file created
  495. 4. Run `cat ~/.netrc` and make sure you see something like
  496. ```
  497. machine **wandb.your_env**
  498. login <your user>
  499. password <your key>
  500. ```
  501. In case you don’t see it — just create it manually
  502. 5. To enable WandB logging via Super-Gradients, add the following code to your `.yaml` training file:
  503. ```yaml
  504. sg_logger: "wandb_sg_logger"
  505. sg_logger_params:
  506. project_name: <your project name>
  507. entity: <your team name>
  508. api_server: "https://wandb.your_env"
  509. save_checkpoints_remote: True
  510. save_tensorboard_remote: True
  511. save_logs_remote: True
  512. ```
  513. As can be seen there are two “parameters” - `project_name` and `entity`.
  514. The hierarchy of WandB is: `entity -> project_name -> experiment_name`.
  515. 6. Launch you training and see it in WandB.
  516. > **NOTE:** Additional Weights and Biases resources - [MLOps blog](https://www.ravirajag.dev/blog/mlops-wandb-integration);
  517. ## SuperGradients FAQ
  518. ### What Type of Tasks Does the SuperGradients Support?
  519. * Image Classification
  520. * Object Detection
  521. * Semantic Segmentation
Discard
@@ -1,21 +1,19 @@
 <div align="center">
 <div align="center">
-  <img src="docs/assets/SG_img/SG - Horizontal.png" width="600"/>
+  <img src="assets/SG_img/SG - Horizontal Glow 2.png" width="600"/>
  <br/><br/>
  <br/><br/>
   
   
-**Easily train or fine-tune SOTA computer vision models with one open source training library**
+**Build, train, and fine-tune production-ready deep learning  SOTA vision models**
 [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Easily%20train%20or%20fine-tune%20SOTA%20computer%20vision%20models%20from%20one%20training%20repository&url=https://github.com/Deci-AI/super-gradients&via=deci_ai&hashtags=AI,deeplearning,computervision,training,opensource)
 [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=Easily%20train%20or%20fine-tune%20SOTA%20computer%20vision%20models%20from%20one%20training%20repository&url=https://github.com/Deci-AI/super-gradients&via=deci_ai&hashtags=AI,deeplearning,computervision,training,opensource)
 
 
-#### Fill our 4-question quick survey! We will raffle free SuperGradients swag between those who will participate -> [Fill Survey](https://hz8qtlvwkaw.typeform.com/to/OpKda0Qe)
+#### Version 3 is out! Notebooks have been updated!
 ______________________________________________________________________
 ______________________________________________________________________
   
   
   <p align="center">
   <p align="center">
   <a href="https://www.supergradients.com/">Website</a> •
   <a href="https://www.supergradients.com/">Website</a> •
-  <a href="#why-use-supergradients">Why Use SG?</a> •
   <a href="https://deci-ai.github.io/super-gradients/user_guide.html#introducing-the-supergradients-library">User Guide</a> •
   <a href="https://deci-ai.github.io/super-gradients/user_guide.html#introducing-the-supergradients-library">User Guide</a> •
   <a href="https://deci-ai.github.io/super-gradients/super_gradients.common.html">Docs</a> •
   <a href="https://deci-ai.github.io/super-gradients/super_gradients.common.html">Docs</a> •
-  <a href="#getting-started">Getting Started Notebooks</a> •
-  <a href="#transfer-learning">Transfer Learning</a> •  
-  <a href="#computer-vision-models---pretrained-checkpoints">Pretrained Models</a> •
+  <a href="#getting-started">Getting Started</a> •
+  <a href="#implemented-model-architectures">Pretrained Models</a> •
   <a href="#community">Community</a> •
   <a href="#community">Community</a> •
   <a href="#license">License</a> •
   <a href="#license">License</a> •
   <a href="#deci-platform">Deci Platform</a>
   <a href="#deci-platform">Deci Platform</a>
@@ -24,7 +22,7 @@ ______________________________________________________________________
   <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-blue" />
   <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-blue" />
   <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/pytorch-1.9%20%7C%201.10-blue" />
   <a href="https://github.com/Deci-AI/super-gradients#prerequisites"><img src="https://img.shields.io/badge/pytorch-1.9%20%7C%201.10-blue" />
   <a href="https://pypi.org/project/super-gradients/"><img src="https://img.shields.io/pypi/v/super-gradients" />
   <a href="https://pypi.org/project/super-gradients/"><img src="https://img.shields.io/pypi/v/super-gradients" />
-  <a href="https://github.com/Deci-AI/super-gradients#computer-vision-models-pretrained-checkpoints" ><img src="https://img.shields.io/badge/pre--trained%20models-30-brightgreen" />
+  <a href="https://github.com/Deci-AI/super-gradients#computer-vision-models-pretrained-checkpoints" ><img src="https://img.shields.io/badge/pre--trained%20models-34-brightgreen" />
   <a href="https://github.com/Deci-AI/super-gradients/releases"><img src="https://img.shields.io/github/v/release/Deci-AI/super-gradients" />
   <a href="https://github.com/Deci-AI/super-gradients/releases"><img src="https://img.shields.io/github/v/release/Deci-AI/super-gradients" />
   <a href="https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q"><img src="https://img.shields.io/badge/slack-community-blueviolet" />
   <a href="https://join.slack.com/t/supergradients-comm52/shared_invite/zt-10vz6o1ia-b_0W5jEPEnuHXm087K~t8Q"><img src="https://img.shields.io/badge/slack-community-blueviolet" />
   <a href="https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" />
   <a href="https://github.com/Deci-AI/super-gradients/blob/master/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" />
@@ -32,80 +30,113 @@ ______________________________________________________________________
 </p>    
 </p>    
 </div>
 </div>
 
 
+[](https://deci-ai.github.io/super-gradients/user_guide.html#introducing-the-supergradients-library)
 
 
-# SuperGradients
+## Build with SuperGradients
+__________________________________________________________________________________________________________
 
 
-## Introduction
-Welcome to SuperGradients, a free, open-source training library for PyTorch-based deep learning models.
-SuperGradients allows you to train or fine-tune SOTA pre-trained models for all the most commonly applied computer vision tasks with just one training library. We currently support object detection, image classification and semantic segmentation for videos and images.
+### Support various computer vision tasks
+<div align="center">
+<img src="./assets/SG_img/Segmentation 1500x900 .png" width="250px">
+<img src="./assets/SG_img/Object detection 1500X900.png" width="250px">
+<img src="./assets/SG_img/Classification 1500x900.png" width="250px">
+</div>
 
 
-Docs and full user guide[](#)
-### Why use SuperGradients?
- 
-**Built-in SOTA Models**
 
 
-Easily load and fine-tune production-ready, [pre-trained SOTA models](https://github.com/Deci-AI/super-gradients#pretrained-classification-pytorch-checkpoints) that incorporate best practices and validated hyper-parameters for achieving best-in-class accuracy.
-    
-**Easily Reproduce our Results**
-       
-Why do all the grind work, if we already did it for you? leverage tested and proven [recipes](https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/recipes) & [code examples](https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples) for a wide range of computer vision models generated by our team of deep learning experts. Easily configure your own or use plug & play hyperparameters for training, dataset, and architecture.
-    
-**Production Readiness and Ease of Integration**
-    
-All SuperGradients models’ are production ready in the sense that they are compatible with deployment tools such as TensorRT (Nvidia) and OpenVINO (Intel) and can be easily taken into production. With a few lines of code you can easily integrate the models into your codebase.
+### Ready to deploy pre-trained SOTA models
+```python
+# Load model with pretrained weights
+model = models.get("yolox_s", pretrained_weights="coco")
+```
 
 
+#### Classification
 <div align="center">
 <div align="center">
-<img src="./docs/assets/SG_img/detection-demo.png" width="600px">
+<img src="./assets/SG_img/Classification@2xDark.png" width="800px">
 </div>
 </div>
 
 
+#### Semantic Segmentation
+<div align="center">
+<img src="./assets/SG_img/Semantic Segmentation@2xDark.png" width="800px">
+</div>
+
+#### Object Detection 
+<div align="center">
+<img src="./assets/SG_img/Object Detection@2xDark.png" width="800px">
+</div>
+
+
+
+All Computer Vision Models - Pretrained Checkpoints can be found [here](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md)
+
+
+### Easy to train SOTA Models
+
+Easily load and fine-tune production-ready, pre-trained SOTA models that incorporate best practices and validated hyper-parameters for achieving best-in-class accuracy. 
+For more information on how to do it go to [Getting Started](#getting-started)
     
     
+
+### Plug and play recipes
+```python
+python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800 dataset_interface.data_dir=<YOUR_Imagenet_LOCAL_PATH> ckpt_root_dir=<CHEKPOINT_DIRECTORY>
+```
+More example on how and why to use recipes can be found in [Recipes](#recipes)
+
+
+### Production readiness
+All SuperGradients models’ are production ready in the sense that they are compatible with deployment tools such as TensorRT (Nvidia) and OpenVINO (Intel) and can be easily taken into production. With a few lines of code you can easily integrate the models into your codebase.
+```python
+# Load model with pretrained weights
+model = models.get("yolox_s", pretrained_weights="coco")
+
+# Prepare model for conversion
+# Input size is in format of [Batch x Channels x Width x Height] where 640 is the standart COCO dataset dimensions
+model.eval()
+model.prep_model_for_conversion(input_size=[1, 3, 640, 640])
+    
+# Create dummy_input
+
+# Convert model to onnx
+torch.onnx.export(model, dummy_input,  "yolox_s.onnx")
+```
+More information on how to take your model to production can be found in [Getting Started](#getting-started) notebooks
+
+## Quick Installation
+
+__________________________________________________________________________________________________________
+
+ 
+```bash
+pip install super-gradients
+```
+
 ## What's New
 ## What's New
-* 【07/08/2022】DDRNet23 -  new pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-semantic-segmentation-pytorch-checkpoints) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with SOTA mIoU scores (~1% above paper)🎯
+__________________________________________________________________________________________________________
+* 【06/9/2022】 PP-LiteSeg - new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md)  for Cityscapes with SOTA mIoU scores (~1.5% above paper)🎯
+* 【07/08/2022】DDRNet23 -  new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with SOTA mIoU scores (~1% above paper)🎯
 * 【27/07/2022】YOLOX models (object detection) - recipes and pre-trained checkpoints.
 * 【27/07/2022】YOLOX models (object detection) - recipes and pre-trained checkpoints.
-* 【07/07/2022】SSD Lite MobileNet V2,V1 - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/coco_ssd_lite_mobilenet_v2.yaml) and pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-object-detection-pytorch-checkpoints) on COCO - Tailored for edge devices! 📱
-* 【07/07/2022】 STDC  - new pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-semantic-segmentation-pytorch-checkpoints) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with super SOTA mIoU scores (~2.5% above paper)🎯
-* 【16/06/2022】 ResNet50  - new pre-trained checkpoint and [recipe](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/imagenet_resnet50_kd.yaml) for ImageNet top-1 score of 81.9 💪
-* 【09/06/2022】 ViT models (Vision Transformer) - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) and pre-trained [checkpoints](https://github.com/Deci-AI/super-gradients#pretrained-object-detection-pytorch-checkpoints) (ViT, BEiT).
-* 【09/06/2022】 Knowledge Distillation support - [training module](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/kd_model/kd_model.py) and [notebook](https://bit.ly/3HQvbsg).
-* 【06/04/2022】 Integration with professional tools - [Weights and Biases](https://bit.ly/3BJzCUv) and [DagsHub](https://bit.ly/3bznLhc).
-* 【09/03/2022】 New [quick start](#quick-start-notebook---semantic-segmentation) and [transfer learning](#transfer-learning-with-sg-notebook---semantic-segmentation) example notebooks for Semantic Segmentation.
-* 【07/02/2022】 We added RegSeg recipes and pre-trained models to our [Semantic Segmentation models](#pretrained-semantic-segmentation-pytorch-checkpoints).
-* 【01/02/2022】 We added issue templates for feature requests and bug reporting.
-* 【20/01/2022】 STDC family - new recipes added with even higher mIoU💪
+* 【07/07/2022】SSD Lite MobileNet V2,V1 - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/coco_ssd_lite_mobilenet_v2.yaml) and pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) on COCO - Tailored for edge devices! 📱
+* 【07/07/2022】 STDC  - new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with super SOTA mIoU scores (~2.5% above paper)🎯
 
 
 Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
 Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
 
 
 ## Coming soon
 ## Coming soon
+__________________________________________________________________________________________________________
+- [ ] PP-LiteSeg recipes for Cityscapes with SOTA mIoU scores (~1.5% above paper)🎯
 - [ ] Single class detectors (recipes, pre-trained checkpoints) for edge devices deployment.
 - [ ] Single class detectors (recipes, pre-trained checkpoints) for edge devices deployment.
 - [ ] Single class segmentation (recipes, pre-trained checkpoints) for edge devices deployment.
 - [ ] Single class segmentation (recipes, pre-trained checkpoints) for edge devices deployment.
 - [ ] QAT capabilities (Quantization Aware Training).
 - [ ] QAT capabilities (Quantization Aware Training).
-- [ ] Dali implementation.
 - [ ] Integration with more professional tools.
 - [ ] Integration with more professional tools.
-- [ ] Improved pre-trained checkpoints and recipes (DDRNet, ResNet, RegSeg, etc.)
 
 
-__________________________________________________________________________________________________________
-### Table of Content
 
 
+## Table of Content
+__________________________________________________________________________________________________________
 <!-- toc -->
 <!-- toc -->
 
 
 - [Getting Started](#getting-started)
 - [Getting Started](#getting-started)
-    - [Quick Start Notebook - Classification example](#quick-start-notebook---classification)
-    - [Quick Start Notebook - Semantic segmentation example](#quick-start-notebook---semantic-segmentation)
-<!-- - [Quick Start Notebook - Object detection example](#quick-start-notebook---object-detection)
-- [Walkthrough Notebook](#supergradients-complete-walkthrough-notebook)
-- [Transfer Learning with SG Notebook - Object detection example](#transfer-learning-with-sg-notebook---object-detection)
-    - [Quick Start Notebook - Upload to Deci Platform example](#quick-start-notebook---upload-your-model-to-deci-platform) -->
-- [Transfer Learning](#transfer-learning)  
-    - [Transfer Learning with SG Notebook - Semantic segmentation example](#transfer-learning-with-sg-notebook---semantic-segmentation)
-- [Knowledge Distillation Training](#knowledge-distillation-training)  
-    - [Knowledge Distillation Training Quick Start with SG Notebook - ResNet18 example](#knowledge-distillation-training-quick-start-with-sg-notebook---resnet18-example)
+- [Advanced Features](#advanced-features)
 - [Installation Methods](#installation-methods)
 - [Installation Methods](#installation-methods)
     - [Prerequisites](#prerequisites)
     - [Prerequisites](#prerequisites)
     - [Quick Installation](#quick-installation)
     - [Quick Installation](#quick-installation)
-- [Computer Vision Models - Pretrained Checkpoints](#computer-vision-models---pretrained-checkpoints)
-  - [Pretrained Classification PyTorch Checkpoints](#pretrained-classification-pytorch-checkpoints)
-  - [Pretrained Object Detection PyTorch Checkpoints](#pretrained-object-detection-pytorch-checkpoints)
-  - [Pretrained Semantic Segmentation PyTorch Checkpoints](#pretrained-semantic-segmentation-pytorch-checkpoints)
 - [Implemented Model Architectures](#implemented-model-architectures)
 - [Implemented Model Architectures](#implemented-model-architectures)
 - [Contributing](#contributing)
 - [Contributing](#contributing)
 - [Citation](#citation)
 - [Citation](#citation)
@@ -116,6 +147,7 @@ ________________________________________________________________________________
 <!-- tocstop -->
 <!-- tocstop -->
 
 
 ## Getting Started
 ## Getting Started
+__________________________________________________________________________________________________________
 
 
 ### Start Training with Just 1 Command Line
 ### Start Training with Just 1 Command Line
 The most simple and straightforward way to start training SOTA performance models with SuperGradients reproducible recipes. Just define your dataset path and where you want your checkpoints to be saved and you are good to go from your terminal!
 The most simple and straightforward way to start training SOTA performance models with SuperGradients reproducible recipes. Just define your dataset path and where you want your checkpoints to be saved and you are good to go from your terminal!
@@ -124,172 +156,216 @@ The most simple and straightforward way to start training SOTA performance model
 python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800 dataset_interface.data_dir=<YOUR_Imagenet_LOCAL_PATH> ckpt_root_dir=<CHEKPOINT_DIRECTORY>
 python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800 dataset_interface.data_dir=<YOUR_Imagenet_LOCAL_PATH> ckpt_root_dir=<CHEKPOINT_DIRECTORY>
 ```
 ```
 ### Quickly Load Pre-Trained Weights for Your Desired Model with SOTA Performance
 ### Quickly Load Pre-Trained Weights for Your Desired Model with SOTA Performance
-Want to try our pre-trained models on your machine? Import SuperGradients, initialize your SgModel, and load your desired architecture and pre-trained weights from our [SOTA model zoo](#computer-vision-models---pretrained-checkpoints)
-    
+Want to try our pre-trained models on your machine? Import SuperGradients, initialize your Trainer, and load your desired architecture and pre-trained weights from our [SOTA model zoo](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md)
+
 ```python
 ```python
 # The pretrained_weights argument will load a pre-trained architecture on the provided dataset
 # The pretrained_weights argument will load a pre-trained architecture on the provided dataset
-# This is an example of loading COCO-2017 pre-trained weights for a YOLOX Nano object detection model
     
     
 import super_gradients
 import super_gradients
-from super_gradients.training import SgModel
 
 
-trainer = SgModel(experiment_name="yoloxn_coco_experiment",ckpt_root_dir=<CHECKPOINT_DIRECTORY>)
-trainer.build_model(architecture="yolox_n", arch_params={"pretrained_weights": "coco", num_classes": 80})
-```   
-    
-### Quick Start Notebook - Classification
+model = models.get("model-name", pretrained_weights="pretrained-model-name")
 
 
-Get started with our quick start notebook for image classification tasks on Google Colab for a quick and easy start using free GPU hardware.
-
-<table class="tfo-notebook-buttons" align="left">
- <td>
-   <a target="_blank" href="https://bit.ly/3ufnsgT"><img src="./docs/assets/SG_img/colab_logo.png" />Classification Quick Start in Google Colab</a>
- </td>
-  <td>
-   <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_classification.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
-   <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
+```   
+###  Classification
+
+#### Transfer Learning 
+  <table class="tfo-notebook-buttons" align="left">
+ <td width="500">  
+  <a target="_blank" href="https://bit.ly/3xzIutb"><img src="./assets/SG_img/colab_logo.png" /> Classification Transfer Learning</a>
+  </td>
+ <td width="200">    
+ <a target="_blank" href="https://bit.ly/3xwYEn1"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
  </br></br>
  </br></br>
 
 
 
 
-### Quick Start Notebook - Semantic Segmentation
-
-Get started with our quick start notebook for semantic segmentation tasks on Google Colab for a quick and easy start using free GPU hardware.
+###  Semantic Segmentation
 
 
+####  Quick Start 
 <table class="tfo-notebook-buttons" align="left">
 <table class="tfo-notebook-buttons" align="left">
- <td>
-   <a target="_blank" href="https://bit.ly/3Jp7w1U"><img src="./docs/assets/SG_img/colab_logo.png" />Segmentation Quick Start in Google Colab</a>
- </td>
-  <td>
-   <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_segmentation.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
+ <td width="500">
+<a target="_blank" href="https://bit.ly/3qKx9m8"><img src="./assets/SG_img/colab_logo.png" /> Segmentation Quick Start</a>
  </td>
  </td>
- <td>
-   <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
+ <td width="200">
+<a target="_blank" href="https://bit.ly/3qJjxYq"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source </a>
  </td>
  </td>
 </table>
 </table>
  </br></br>
  </br></br>
 
 
-<!-- 
-### Quick Start Notebook - Object Detection
-
-Get started with our quick start notebook for object detection tasks on Google Colab for a quick and easy start using free GPU hardware.
 
 
+ 
+ ####  Transfer Learning 
 <table class="tfo-notebook-buttons" align="left">
 <table class="tfo-notebook-buttons" align="left">
- <td>
-   <a target="_blank" href="https://bit.ly/3wqMsEM"><img src="./docs/assets/SG_img/colab_logo.png" />Detection Quick Start in Google Colab</a>
+ <td width="500">
+<a target="_blank" href="https://bit.ly/3qKwMbe"><img src="./assets/SG_img/colab_logo.png" /> Segmentation Transfer Learning</a>
  </td>
  </td>
-  <td>
-   <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_detection.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
-   <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
+ <td width="200">
+<a target="_blank" href="https://bit.ly/3ShJlXn"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
  </br></br>
  </br></br>
- 
-### Quick Start Notebook - Upload your model to Deci Platform
 
 
-Get Started with an example of how to upload your trained model to Deci Platform for runtime optimization and compilation to your target deployment HW.
-<table class="tfo-notebook-buttons" align="left">
-  <tbody>
-    <tr>
-      <td vertical-align="middle">
-        <img src="./docs/assets/SG_img/colab_logo.png" />
-        <a target="_blank" href="https://bit.ly/3cAkoXG">
-          Upload to Deci Platform in Google Colab
-        </a>
-      </td>
-      <td vertical-align="middle">
-        <img src="./docs/assets/SG_img/download_logo.png" />
-        <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_quickstart_model_upload_deci_lab.ipynb">
-          Download notebook
-        </a>
-      </td>
-      <td>
-        <img src="./docs/assets/SG_img/GitHub_logo.png" />
-        <a target="_blank" href="https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/deci_lab_export_example/deci_lab_export_example.py">
-          View source on GitHub
-        </a>
-      </td>
-    </tr>
-  </tbody>
-</table>
- </br></br>
-
-### SuperGradients Complete Walkthrough Notebook
 
 
-Learn more about SuperGradients training components with our walkthrough notebook on Google Colab for an easy to use tutorial using free GPU hardware
 
 
-<table class="tfo-notebook-buttons" align="left">
- <td>
-   <a target="_blank" href="https://bit.ly/3JspSPF"><img src="./docs/assets/SG_img/colab_logo.png" />SuperGradients Walkthrough in Google Colab</a>
- </td>
-  <td>
-   <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_Walkthrough.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
-   <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
+####  How to Connect Custom Dataset 
+  <table class="tfo-notebook-buttons" align="left">
+ <td width="500"> 
+<a target="_blank" href="https://bit.ly/3QQBVJp"><img src="./assets/SG_img/colab_logo.png" /> Segmentation How to Connect Custom Dataset</a>
+   </td>
+ <td width="200">
+ <a target="_blank" href="https://bit.ly/3Us2WGi"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
  </br></br>
  </br></br>
 
 
- ### Transfer Learning with SG Notebook - Object Detection
 
 
-Learn more about SuperGradients transfer learning or fine tuning abilities with our COCO pre-trained YoloX nano fine tuning into a sub-dataset of PASCAL VOC example notebook on Google Colab for an easy to use tutorial using free GPU hardware
 
 
-<table class="tfo-notebook-buttons" align="left">
- <td>
-   <a target="_blank" href="https://bit.ly/3iGvnP7"><img src="./docs/assets/SG_img/colab_logo.png" />Detection Transfer Learning in Google Colab</a>
- </td>
-  <td>
-   <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_transfer_learning_object_detection.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
- </td>
- <td>
-   <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
+###  Object Detection
+
+
+#### Transfer Learning
+  <table class="tfo-notebook-buttons" align="left">
+ <td width="500">   
+<a target="_blank" href="https://bit.ly/3SkMohx"><img src="./assets/SG_img/colab_logo.png" /> Detection Transfer Learning</a>
+   </td>
+ <td width="200">   
+<a target="_blank" href="https://bit.ly/3DF8siG"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
  </br></br>
  </br></br>
-  -->
- 
-## Transfer Learning
-### Transfer Learning with SG Notebook - Semantic Segmentation
-Learn more about SuperGradients transfer learning or fine tuning abilities with our Citiscapes pre-trained RegSeg48 fine tuning into a sub-dataset of Supervisely example notebook on Google Colab for an easy to use tutorial using free GPU hardware
 
 
-<table class="tfo-notebook-buttons" align="left">
- <td>
-   <a target="_blank" href="https://bit.ly/37P04PN"><img src="./docs/assets/SG_img/colab_logo.png" />Segmentation Transfer Learning in Google Colab</a>
- </td>
-  <td>
-   <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_transfer_learning_semantic_segmentation.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
+#### How to Connect Custom Dataset 
+  <table class="tfo-notebook-buttons" align="left">
+ <td width="500">  
+  <a target="_blank" href="https://bit.ly/3dqDlg3"><img src="./assets/SG_img/colab_logo.png" /> Detection How to Connect Custom Dataset</a>
+  </td>
+ <td width="200">      
+<a target="_blank" href="https://bit.ly/3xBlcmq"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
- <td>
-   <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
+</table>
+ </br></br>
+
+
+
+### How to Predict Using Pre-trained Model
+
+#### Segmentation, Detection and Classification Prediction 
+  <table class="tfo-notebook-buttons" align="left">
+ <td width="500">    
+<a target="_blank" href="https://bit.ly/3f4mssd"><img src="./assets/SG_img/colab_logo.png" /> How to Predict Using Pre-trained Model</a>
+  </td>
+ <td width="200">   
+<a target="_blank" href="https://bit.ly/3Sf59Tr"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
  </br></br>
  </br></br>
 
 
-## Knowledge Distillation Training
-### Knowledge Distillation Training Quick Start with SG Notebook - ResNet18 example
+
+## Advanced Features
+__________________________________________________________________________________________________________
+### Knowledge Distillation Training
 Knowledge Distillation is a training technique that uses a large model, teacher model, to improve the performance of a smaller model, the student model.
 Knowledge Distillation is a training technique that uses a large model, teacher model, to improve the performance of a smaller model, the student model.
 Learn more about SuperGradients knowledge distillation training with our pre-trained BEiT base teacher model and Resnet18 student model on CIFAR10 example notebook on Google Colab for an easy to use tutorial using free GPU hardware
 Learn more about SuperGradients knowledge distillation training with our pre-trained BEiT base teacher model and Resnet18 student model on CIFAR10 example notebook on Google Colab for an easy to use tutorial using free GPU hardware
-
-<table class="tfo-notebook-buttons" align="left">
- <td>
-   <a target="_blank" href="https://bit.ly/3HQvbsg"><img src="./docs/assets/SG_img/colab_logo.png" />KD Training in Google Colab</a>
- </td>
-  <td>
-   <a href="https://minhaskamal.github.io/DownGit/#/home?url=https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/examples/SG_knowledge_distillation_quickstart.ipynb"><img src="./docs/assets/SG_img/download_logo.png" />Download notebook</a>
+  <table class="tfo-notebook-buttons" align="left">
+ <td width="500">   
+   <a target="_blank" href="https://bit.ly/3BLA5oR"><img src="./assets/SG_img/colab_logo.png" /> Knowledge Distillation Training</a>
+  </td>
+ <td width="200">   
+<a target="_blank" href="https://bit.ly/3S9UlG4"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
- <td>
-   <a target="_blank" href="https://github.com/Deci-AI/super-gradients/tree/master/src/super_gradients/examples"><img src="./docs/assets/SG_img/GitHub_logo.png" />View source on GitHub</a>
+</table>
+ </br></br>
+
+### Recipes
+To train a model, it is necessary to configure 4 main components. These components are aggregated into a single "main" recipe `.yaml` file that inherits the aforementioned dataset, architecture, raining and checkpoint params. It is also possible (and recomended for flexibility) to override default settings with custom ones.
+All recipes can be found [here](src/super_gradients/recipes/Training_Recipes.md)
+  <table class="tfo-notebook-buttons" align="left">
+ <td width="500">   
+   <a target="_blank" href="https://bit.ly/3UiY5ab"><img src="./assets/SG_img/colab_logo.png" /> How to Use Recipes</a>
+  </td>
+ <td width="200">  
+<a target="_blank" href="https://bit.ly/3QSrHbm"><img src="./assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
  </br></br>
  </br></br>
 
 
+
+### Using DDP
+```python
+from super_gradients import init_trainer
+from super_gradients.common import MultiGPUMode
+from super_gradients.training.utils.distributed_training_utils import setup_gpu_mode
+
+# Initialize the environment
+init_trainer()
+
+# Launch DDP on 1 device (node) of 4 GPU's
+setup_gpu_mode(gpu_mode=MultiGPUMode.DISTRIBUTED_DATA_PARALLEL, num_gpus=4)
+
+# Define the objects
+
+# The trainer will run on DDP without anything else to change
+```
+### Easily change architectures parameters
+```python
+from super_gradients.training import models
+
+# instantiate default pretrained resnet18
+default_resnet18 = models.get(name="resnet18", num_classes=100, pretrained_weights="imagenet")
+
+# instantiate pretrained resnet18, turning DropPath on with probability 0.5
+droppath_resnet18 = models.get(name="resnet18", arch_params={"droppath_prob": 0.5}, num_classes=100, pretrained_weights="imagenet")
+
+# instantiate pretrained resnet18, without classifier head. Output will be from the last stage before global pooling
+backbone_resnet18 = models.get(name="resnet18", arch_params={"backbone_mode": True}, pretrained_weights="imagenet")
+```
+
+### Using phase callbacks
+```python
+from super_gradients import Trainer
+from torch.optim.lr_scheduler import ReduceLROnPlateau
+from super_gradients.training.utils.callbacks import Phase, LRSchedulerCallback
+from super_gradients.training.metrics.classification_metrics import Accuracy
+
+# define PyTorch train and validation loaders and optimizer
+
+# define what to be called in the callback
+rop_lr_scheduler = ReduceLROnPlateau(optimizer, mode="max", patience=10, verbose=True)
+
+# define phase callbacks, they will fire as defined in Phase
+phase_callbacks = [LRSchedulerCallback(scheduler=rop_lr_scheduler,
+                                       phase=Phase.VALIDATION_EPOCH_END,
+                                       metric_name="Accuracy")]
+
+# create a trainer object, look the declaration for more parameters
+trainer = Trainer("experiment_name")
+
+# define phase_callbacks as part of the training parameters
+train_params = {"phase_callbacks": phase_callbacks}
+```
+### Integration to Weights and Biases
+```python
+from super_gradients import Trainer
+
+# create a trainer object, look the declaration for more parameters
+trainer = Trainer("experiment_name")
+
+train_params = { ... # training parameters
+                "sg_logger": "wandb_sg_logger", # Weights&Biases Logger, see class WandBSGLogger for details
+                "sg_logger_params": # paramenters that will be passes to __init__ of the logger 
+                  {
+                    "project_name": "project_name", # W&B project name
+                    "save_checkpoints_remote": True
+                    "save_tensorboard_remote": True
+                    "save_logs_remote": True
+                  } 
+               }
+```
+
+
 ## Installation Methods
 ## Installation Methods
+__________________________________________________________________________________________________________
 ### Prerequisites
 ### Prerequisites
 <details>
 <details>
   
   
@@ -339,117 +415,53 @@ pip install git+https://github.com/Deci-AI/super-gradients.git@stable
 </details> 
 </details> 
 
 
 
 
-## Computer Vision Models - Pretrained Checkpoints
-
-### Pretrained Classification PyTorch Checkpoints
-
-
-| Model | Dataset |  Resolution |    Top-1    |    Top-5   | Latency (HW)*<sub>T4</sub>  | Latency (Production)**<sub>T4</sub> |Latency (HW)*<sub>Jetson Xavier NX</sub>  | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub>  |
-|------------ | ------ | ---------- |----------- | ----------- | ----------- |---------- |----------- | ----------- | :------: |
-| ViT base | ImageNet21K | 224x224 |  84.15  | - |**4.46ms** |**4.60ms** | **-** * |**-**|**57.22ms** |
-| ViT large | ImageNet21K | 224x224 |  85.64  | - |**12.81ms** |**13.19ms** | **-** * |**-**|**187.22ms** |
-| BEiT | ImageNet21K | 224x224 |  -  | - |**-ms** |**-ms** | **-** * |**-**|**-ms** |
-| EfficientNet B0 | ImageNet | 224x224 |  77.62  | 93.49 |**0.93ms** |**1.38ms** | **-** * |**-**|**3.44ms** |
-| RegNet Y200 | ImageNet  |224x224 |  70.88   | 89.35 |**0.63ms** | **1.08ms** | **2.16ms** |**2.47ms**|**2.06ms** |
-| RegNet Y400  | ImageNet |224x224 |  74.74   | 91.46 |**0.80ms** | **1.25ms** |**2.62ms** |**2.91ms** |**2.87ms** |
-| RegNet Y600  | ImageNet |224x224 |  76.18   | 92.34 |**0.77ms** | **1.22ms** |**2.64ms** |**2.93ms** |**2.39ms** |
-| RegNet Y800  | ImageNet |224x224 |  77.07  |  93.26 |**0.74ms** | **1.19ms** |**2.77ms** |**3.04ms** |**2.81ms** |
-| ResNet 18   | ImageNet  |224x224   |  70.6   |   89.64 |**0.52ms** | **0.95ms** |**2.01ms**|**2.30ms** |**4.56ms** |
-| ResNet 34  | ImageNet  |224x224   |  74.13   |   91.7  |**0.92ms**  |**1.34ms** |**3.57ms**|**3.87ms** | **7.64ms** |
-| ResNet 50  | ImageNet  |224x224   |  81.91  |   93.0  |**1.03ms** | **1.44ms** | **4.78ms**|**5.10ms** |**9.25ms** |
-| MobileNet V3_large-150 epochs | ImageNet  |224x224   |  73.79    |   91.54  |**0.67ms** | **1.11ms** |**2.42ms** |**2.71ms** |**1.76ms** |
-| MobileNet V3_large-300 epochs  | ImageNet  |224x224   |  74.52    |  91.92 |**0.67ms** | **1.11ms** |**2.42ms** |**2.71ms** |**1.76ms** |
-| MobileNet V3_small | ImageNet  |224x224   |67.45    |  87.47   |**0.55ms** | **0.96ms** |**2.01ms** *|**2.35ms** |**1.06ms** |
-| MobileNet V2_w1   | ImageNet  |224x224   |  73.08 | 91.1  |**0.46 ms**| **0.89ms** |**1.65ms** *|**1.90ms** | **1.56ms** |
-> **NOTE:** <br/>
-> - Latency (HW)* - Hardware performance (not including IO)<br/>
-> - Latency (Production)** - Production Performance (including IO)
-> - Performance measured for T4 and Jetson Xavier NX with TensorRT, using FP16 precision and batch size 1
-> - Performance measured for Cascade Lake CPU with OpenVINO, using FP16 precision and batch size 1
-
-
-
-### Pretrained Object Detection PyTorch Checkpoints
-
-
-| Model | Dataset |  Resolution | mAP<sup>val<br>0.5:0.95 | Latency (HW)*<sub>T4</sub>  | Latency (Production)**<sub>T4</sub> |Latency (HW)*<sub>Jetson Xavier NX</sub>  | Latency (Production)**<sub>Jetson Xavier NX</sub> | Latency <sub>Cascade Lake</sub>  |
-|------------- |------ | ---------- |------ | -------- |------ | ---------- |------ | :------: |
-| SSD lite MobileNet v2 | COCO |320x320 |21.5 |**0.77ms** |**1.40ms**|**5.28ms** |**6.44ms** |**4.13ms**|
-| SSD lite MobileNet v1 | COCO |320x320 |24.3 |**1.55ms** |**2.84ms**|**8.07ms** |**9.14ms** |**22.76ms**|
-| YOLOX nano | COCO |640x640 |26.77|**2.47ms** |**4.09ms**|**11.49ms** |**12.97ms** |**-**|
-| YOLOX tiny | COCO |640x640 |37.18|**3.16ms** |**4.61ms**|**15.23ms** |**19.24ms** |**-**|
-| YOLOX small | COCO |640x640 |40.47 |**3.58ms** |**4.94ms**|**18.88ms** |**22.48ms** |**-**|
-| YOLOX medium| COCO |640x640 |46.4 |**6.40ms** |**7.65ms**|**39.22ms** |**44.5ms** |**-**|
-| YOLOX large | COCO |640x640 |49.25 |**10.07ms** |**11.12ms**|**68.73ms** |**77.01ms** |**-**|
-  
-
-> **NOTE:** <br/>
-> - Latency (HW)* - Hardware performance (not including IO)<br/>
-> - Latency (Production)** - Production Performance (including IO)
-> - Latency performance measured for T4 and Jetson Xavier NX with TensorRT, using FP16 precision and batch size 1
-> - Latency performance measured for Cascade Lake CPU with OpenVINO, using FP16 precision and batch size 1
-
-### Pretrained Semantic Segmentation PyTorch Checkpoints
-
-
-| Model | Dataset |  Resolution | mIoU | Latency b1<sub>T4</sub> | Latency b1<sub>T4</sub> including IO |
-|--------------------- |------ | ---------- | ------ | -------- | :------: |
-| DDRNet 23   | Cityscapes |1024x2048   |80.26 |**7.62ms** |**25.94ms**|
-| DDRNet 23 slim   | Cityscapes |1024x2048 |78.01 |**3.56ms** |**22.80ms**|
-| STDC 1-Seg50   | Cityscapes | 512x1024 |75.07 |**2.83ms** |**12.57ms**|
-| STDC 1-Seg75   | Cityscapes | 768x1536 |77.8  |**5.71ms** |**26.70ms**|
-| STDC 2-Seg50   | Cityscapes | 512x1024 |75.79 |**3.74ms** |**13.89ms**
-| STDC 2-Seg75   | Cityscapes | 768x1536 |78.93 |**7.35ms** |**28.18ms**|
-| RegSeg (exp48)   | Cityscapes | 1024x2048 |78.15 |**13.09ms** |**41.88ms**|
-| Larger RegSeg (exp53)   | Cityscapes | 1024x2048 |79.2|**24.82ms** |**51.87ms**|
-| ShelfNet LW 34 | COCO Segmentation (21 classes from PASCAL including background) |512x512 |65.1  |**-** |**-** |
-
+## Implemented Model Architectures 
+__________________________________________________________________________________________________________
 
 
-> **NOTE:** Performance measured on T4 GPU with TensorRT, using FP16 precision and batch size 1 (latency), and not including IO
+Detailed list can be found [here](src/super_gradients/training/models/Implemented%20Model%20Architectures.md) 
 
 
-## Implemented Model Architectures 
-  
 ### Image Classification
 ### Image Classification
   
   
-- [DensNet (Densely Connected Convolutional Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/densenet.py) - Densely Connected Convolutional Networks [https://arxiv.org/pdf/1608.06993.pdf](https://arxiv.org/pdf/1608.06993.pdf)
-- [DPN](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/dpn.py) - Dual Path Networks [https://arxiv.org/pdf/1707.01629](https://arxiv.org/pdf/1707.01629)
-- [EfficientNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/efficientnet.py) - [https://arxiv.org/abs/1905.11946](https://arxiv.org/abs/1905.11946)
-- [GoogleNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/googlenet.py) - [https://arxiv.org/pdf/1409.4842](https://arxiv.org/pdf/1409.4842)
-- [LeNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/lenet.py) - [https://yann.lecun.com/exdb/lenet/](http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf)
-- [MobileNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenet.py) - Efficient Convolutional Neural Networks for Mobile Vision Applications [https://arxiv.org/pdf/1704.04861](https://arxiv.org/pdf/1704.04861)
-- [MobileNet v2](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenetv2.py) - [https://arxiv.org/pdf/1801.04381](https://arxiv.org/pdf/1801.04381) 
-- [MobileNet v3](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenetv3.py) - [https://arxiv.org/pdf/1905.02244](https://arxiv.org/pdf/1905.02244)
-- [PNASNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/pnasnet.py) - Progressive Neural Architecture Search Networks [https://arxiv.org/pdf/1712.00559](https://arxiv.org/pdf/1712.00559)
-- [Pre-activation ResNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/preact_resnet.py) - [https://arxiv.org/pdf/1603.05027](https://arxiv.org/pdf/1603.05027)  
-- [RegNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/regnet.py) - [https://arxiv.org/pdf/2003.13678.pdf](https://arxiv.org/pdf/2003.13678.pdf) 
-- [RepVGG](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/repvgg.py) - Making VGG-style ConvNets Great Again [https://arxiv.org/pdf/2101.03697.pdf](https://arxiv.org/pdf/2101.03697.pdf) 
-- [ResNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/resnet.py) - Deep Residual Learning for Image Recognition [https://arxiv.org/pdf/1512.03385](https://arxiv.org/pdf/1512.03385)  
-- [ResNeXt](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/resnext.py) - Aggregated Residual Transformations for Deep Neural Networks [https://arxiv.org/pdf/1611.05431](https://arxiv.org/pdf/1611.05431)
-- [SENet ](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/senet.py) - Squeeze-and-Excitation Networks[https://arxiv.org/pdf/1709.01507](https://arxiv.org/pdf/1709.01507)
-- [ShuffleNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/shufflenet.py) - [https://arxiv.org/pdf/1707.01083](https://arxiv.org/pdf/1707.01083)
-- [ShuffleNet v2](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/shufflenetv2.py) - Efficient Convolutional Neural Network for Mobile
-Devices[https://arxiv.org/pdf/1807.11164](https://arxiv.org/pdf/1807.11164)
-- [VGG](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/vgg.py) - Very Deep Convolutional Networks for Large-scale Image Recognition [https://arxiv.org/pdf/1409.1556](https://arxiv.org/pdf/1409.1556)
+- [DensNet (Densely Connected Convolutional Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/densenet.py) 
+- [DPN](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/dpn.py) 
+- [EfficientNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/efficientnet.py)
+- [LeNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/lenet.py) 
+- [MobileNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenet.py)
+- [MobileNet v2](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenetv2.py)  
+- [MobileNet v3](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/mobilenetv3.py) 
+- [PNASNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/pnasnet.py) 
+- [Pre-activation ResNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/preact_resnet.py)  
+- [RegNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/regnet.py)
+- [RepVGG](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/repvgg.py)  
+- [ResNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/resnet.py)
+- [ResNeXt](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/resnext.py) 
+- [SENet ](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/senet.py)
+- [ShuffleNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/shufflenet.py)
+- [ShuffleNet v2](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/shufflenetv2.py)
+- [VGG](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/classification_models/vgg.py)
   
   
+### Semantic Segmentation 
+
+- [PP-LiteSeg](https://bit.ly/3RrtMMO)
+- [DDRNet (Deep Dual-resolution Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/ddrnet.py) 
+- [LadderNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/laddernet.py)
+- [RegSeg](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/regseg.py)
+- [ShelfNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/shelfnet.py) 
+- [STDC](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/stdc.py)
   
   
+
 ### Object Detection
 ### Object Detection
   
   
 - [CSP DarkNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/csp_darknet53.py)
 - [CSP DarkNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/csp_darknet53.py)
 - [DarkNet-53](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/darknet53.py)
 - [DarkNet-53](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/darknet53.py)
-- [SSD (Single Shot Detector)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/ssd.py) - [https://arxiv.org/pdf/1512.02325](https://arxiv.org/pdf/1512.02325)
-- [YOLOX](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/yolox.py) - [https://arxiv.org/abs/2107.08430](https://arxiv.org/abs/2107.08430)
+- [SSD (Single Shot Detector)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/ssd.py) 
+- [YOLOX](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/detection_models/yolox.py)
   
   
   
   
-### Semantic Segmentation 
-  
-- [DDRNet (Deep Dual-resolution Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/ddrnet.py) - [https://arxiv.org/pdf/2101.06085.pdf](https://arxiv.org/pdf/2101.06085.pdf)
-- [LadderNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/laddernet.py) - Multi-path networks based on U-Net for medical image segmentation [https://arxiv.org/pdf/1810.07810](https://arxiv.org/pdf/1810.07810)
-- [RegSeg](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/regseg.py) - Rethink Dilated Convolution for Real-time Semantic Segmentation [https://arxiv.org/pdf/2111.09957](https://arxiv.org/pdf/2111.09957)
-- [ShelfNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/shelfnet.py) - [https://arxiv.org/pdf/1811.11254](https://arxiv.org/pdf/1811.11254)
-- [STDC](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/stdc.py) - Rethinking BiSeNet For Real-time Semantic Segmentation [https://arxiv.org/pdf/2104.13188](https://arxiv.org/pdf/2104.13188)
-  
-</details>
-  
+
+__________________________________________________________________________________________________________
+
+
 ## Documentation
 ## Documentation
 
 
 Check SuperGradients [Docs](https://deci-ai.github.io/super-gradients/welcome.html) for full documentation, user guide, and examples.
 Check SuperGradients [Docs](https://deci-ai.github.io/super-gradients/welcome.html) for full documentation, user guide, and examples.
@@ -499,7 +511,7 @@ ________________________________________________________________________________
 
 
 Deci Platform is our end to end platform for building, optimizing and deploying deep learning models to production.
 Deci Platform is our end to end platform for building, optimizing and deploying deep learning models to production.
 
 
-Sign up for our [FREE Community Tier](https://console.deci.ai/) to enjoy immediate improvement in throughput, latency, memory footprint and model size.
+[Request free trial](https://bit.ly/3qO3icq) to enjoy immediate improvement in throughput, latency, memory footprint and model size.
 
 
 Features:
 Features:
 - Automatically compile and quantize your models with just a few clicks (TensorRT, OpenVINO).
 - Automatically compile and quantize your models with just a few clicks (TensorRT, OpenVINO).
@@ -507,6 +519,6 @@ Features:
 - Easily benchmark your models’ performance on different hardware and batch sizes.
 - Easily benchmark your models’ performance on different hardware and batch sizes.
 - Invite co-workers to collaborate on models and communicate your progress.
 - Invite co-workers to collaborate on models and communicate your progress.
 - Deci supports all common frameworks and Hardware, from Intel CPUs to Nvidia's GPUs and Jetsons.
 - Deci supports all common frameworks and Hardware, from Intel CPUs to Nvidia's GPUs and Jetsons.
+ֿ
 
 
-Sign up for Deci Platform for free [here](https://console.deci.ai/) 
-
+Request free trial [here](https://bit.ly/3qO3icq) 
Discard