|
@@ -1,3 +1,4 @@
|
|
|
|
+import tempfile
|
|
import unittest
|
|
import unittest
|
|
|
|
|
|
import super_gradients
|
|
import super_gradients
|
|
@@ -13,59 +14,56 @@ class DatasetIntegrationTest(unittest.TestCase):
|
|
self.batch_size = 64
|
|
self.batch_size = 64
|
|
self.max_samples_per_plot = 16
|
|
self.max_samples_per_plot = 16
|
|
self.n_plot = 1
|
|
self.n_plot = 1
|
|
- transforms = [DetectionMosaic(input_dim=(640, 640), prob=0.8),
|
|
|
|
- DetectionPaddedRescale(input_dim=(640, 640), max_targets=120),
|
|
|
|
- DetectionTargetsFormatTransform(output_format=DetectionTargetsFormat.XYXY_LABEL)]
|
|
|
|
-
|
|
|
|
- self.pascal_class_inclusion_lists = [['aeroplane', 'bicycle'],
|
|
|
|
- ['bird', 'boat', 'bottle', 'bus'],
|
|
|
|
- ['pottedplant'],
|
|
|
|
- ['person']]
|
|
|
|
- self.pascal_base_config = dict(data_dir='/home/louis.dupont/data/pascal_unified_coco_format/',
|
|
|
|
- images_sub_directory='images/train2012/',
|
|
|
|
- input_dim=(640, 640),
|
|
|
|
- transforms=transforms)
|
|
|
|
-
|
|
|
|
- self.coco_class_inclusion_lists = [['airplane', 'bicycle'],
|
|
|
|
- ['bird', 'boat', 'bottle', 'bus'],
|
|
|
|
- ['potted plant'],
|
|
|
|
- ['person']]
|
|
|
|
- self.dataset_coco_base_config = dict(data_dir="/data/coco",
|
|
|
|
- subdir="images/val2017",
|
|
|
|
- json_file="instances_val2017.json",
|
|
|
|
- input_dim=(640, 640),
|
|
|
|
- transforms=transforms,)
|
|
|
|
|
|
+ transforms = [
|
|
|
|
+ DetectionMosaic(input_dim=(640, 640), prob=0.8),
|
|
|
|
+ DetectionPaddedRescale(input_dim=(640, 640), max_targets=120),
|
|
|
|
+ DetectionTargetsFormatTransform(output_format=DetectionTargetsFormat.XYXY_LABEL),
|
|
|
|
+ ]
|
|
|
|
+
|
|
|
|
+ self.test_dir = tempfile.TemporaryDirectory().name
|
|
|
|
+ PascalVOCDetectionDataset.download(self.test_dir)
|
|
|
|
+ self.pascal_class_inclusion_lists = [["aeroplane", "bicycle"], ["bird", "boat", "bottle", "bus"], ["pottedplant"], ["person"]]
|
|
|
|
+ self.pascal_base_config = dict(data_dir=self.test_dir, images_sub_directory="images/train2012/", input_dim=(640, 640), transforms=transforms)
|
|
|
|
+
|
|
|
|
+ self.coco_class_inclusion_lists = [["airplane", "bicycle"], ["bird", "boat", "bottle", "bus"], ["potted plant"], ["person"]]
|
|
|
|
+ self.dataset_coco_base_config = dict(
|
|
|
|
+ data_dir="/data/coco",
|
|
|
|
+ subdir="images/val2017",
|
|
|
|
+ json_file="instances_val2017.json",
|
|
|
|
+ input_dim=(640, 640),
|
|
|
|
+ transforms=transforms,
|
|
|
|
+ )
|
|
|
|
|
|
def test_multiple_pascal_dataset_subclass_before_transforms(self):
|
|
def test_multiple_pascal_dataset_subclass_before_transforms(self):
|
|
"""Run test_pascal_dataset_subclass on multiple inclusion lists"""
|
|
"""Run test_pascal_dataset_subclass on multiple inclusion lists"""
|
|
for class_inclusion_list in self.pascal_class_inclusion_lists:
|
|
for class_inclusion_list in self.pascal_class_inclusion_lists:
|
|
- dataset = PascalVOCDetectionDataset(class_inclusion_list=class_inclusion_list,
|
|
|
|
- max_num_samples=self.max_samples_per_plot * self.n_plot,
|
|
|
|
- **self.pascal_base_config)
|
|
|
|
|
|
+ dataset = PascalVOCDetectionDataset(
|
|
|
|
+ class_inclusion_list=class_inclusion_list, max_num_samples=self.max_samples_per_plot * self.n_plot, **self.pascal_base_config
|
|
|
|
+ )
|
|
dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=False)
|
|
dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=False)
|
|
|
|
|
|
def test_multiple_pascal_dataset_subclass_after_transforms(self):
|
|
def test_multiple_pascal_dataset_subclass_after_transforms(self):
|
|
"""Run test_pascal_dataset_subclass on multiple inclusion lists"""
|
|
"""Run test_pascal_dataset_subclass on multiple inclusion lists"""
|
|
for class_inclusion_list in self.pascal_class_inclusion_lists:
|
|
for class_inclusion_list in self.pascal_class_inclusion_lists:
|
|
- dataset = PascalVOCDetectionDataset(class_inclusion_list=class_inclusion_list,
|
|
|
|
- max_num_samples=self.max_samples_per_plot * self.n_plot,
|
|
|
|
- **self.pascal_base_config)
|
|
|
|
|
|
+ dataset = PascalVOCDetectionDataset(
|
|
|
|
+ class_inclusion_list=class_inclusion_list, max_num_samples=self.max_samples_per_plot * self.n_plot, **self.pascal_base_config
|
|
|
|
+ )
|
|
dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=True)
|
|
dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=True)
|
|
|
|
|
|
def test_multiple_coco_dataset_subclass_before_transforms(self):
|
|
def test_multiple_coco_dataset_subclass_before_transforms(self):
|
|
"""Check subclass on multiple inclusions before transform"""
|
|
"""Check subclass on multiple inclusions before transform"""
|
|
for class_inclusion_list in self.coco_class_inclusion_lists:
|
|
for class_inclusion_list in self.coco_class_inclusion_lists:
|
|
- dataset = COCODetectionDataset(class_inclusion_list=class_inclusion_list,
|
|
|
|
- max_num_samples=self.max_samples_per_plot * self.n_plot,
|
|
|
|
- **self.dataset_coco_base_config)
|
|
|
|
|
|
+ dataset = COCODetectionDataset(
|
|
|
|
+ class_inclusion_list=class_inclusion_list, max_num_samples=self.max_samples_per_plot * self.n_plot, **self.dataset_coco_base_config
|
|
|
|
+ )
|
|
dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=False)
|
|
dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=False)
|
|
|
|
|
|
def test_multiple_coco_dataset_subclass_after_transforms(self):
|
|
def test_multiple_coco_dataset_subclass_after_transforms(self):
|
|
"""Check subclass on multiple inclusions after transform"""
|
|
"""Check subclass on multiple inclusions after transform"""
|
|
for class_inclusion_list in self.coco_class_inclusion_lists:
|
|
for class_inclusion_list in self.coco_class_inclusion_lists:
|
|
- dataset = COCODetectionDataset(class_inclusion_list=class_inclusion_list,
|
|
|
|
- max_num_samples=self.max_samples_per_plot * self.n_plot,
|
|
|
|
- **self.dataset_coco_base_config)
|
|
|
|
|
|
+ dataset = COCODetectionDataset(
|
|
|
|
+ class_inclusion_list=class_inclusion_list, max_num_samples=self.max_samples_per_plot * self.n_plot, **self.dataset_coco_base_config
|
|
|
|
+ )
|
|
dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=True)
|
|
dataset.plot(max_samples_per_plot=self.max_samples_per_plot, n_plots=self.n_plot, plot_transformed_data=True)
|
|
|
|
|
|
def test_subclass_non_existing_class(self):
|
|
def test_subclass_non_existing_class(self):
|
|
@@ -86,5 +84,5 @@ class DatasetIntegrationTest(unittest.TestCase):
|
|
self.assertEqual(len(sampled_dataset), min(max_num_samples, len(full_dataset)))
|
|
self.assertEqual(len(sampled_dataset), min(max_num_samples, len(full_dataset)))
|
|
|
|
|
|
|
|
|
|
-if __name__ == '__main__':
|
|
|
|
|
|
+if __name__ == "__main__":
|
|
unittest.main()
|
|
unittest.main()
|