|
@@ -4,7 +4,7 @@ import torch
|
|
|
|
|
|
|
|
from super_gradients import Trainer
|
|
from super_gradients import Trainer
|
|
|
from super_gradients.common.decorators.factory_decorator import resolve_param
|
|
from super_gradients.common.decorators.factory_decorator import resolve_param
|
|
|
-from super_gradients.common.factories import ActivationsTypeFactory
|
|
|
|
|
|
|
+from super_gradients.common.factories.activations_type_factory import ActivationsTypeFactory
|
|
|
from super_gradients.training import models
|
|
from super_gradients.training import models
|
|
|
from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
|
|
from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
|
|
|
from super_gradients.training.metrics import Accuracy, Top5
|
|
from super_gradients.training.metrics import Accuracy, Top5
|
|
@@ -12,28 +12,27 @@ from torch import nn
|
|
|
|
|
|
|
|
|
|
|
|
|
class FactoriesTest(unittest.TestCase):
|
|
class FactoriesTest(unittest.TestCase):
|
|
|
-
|
|
|
|
|
def test_training_with_factories(self):
|
|
def test_training_with_factories(self):
|
|
|
trainer = Trainer("test_train_with_factories")
|
|
trainer = Trainer("test_train_with_factories")
|
|
|
net = models.get("resnet18", num_classes=5)
|
|
net = models.get("resnet18", num_classes=5)
|
|
|
- train_params = {"max_epochs": 2,
|
|
|
|
|
- "lr_updates": [1],
|
|
|
|
|
- "lr_decay_factor": 0.1,
|
|
|
|
|
- "lr_mode": "step",
|
|
|
|
|
- "lr_warmup_epochs": 0,
|
|
|
|
|
- "initial_lr": 0.1,
|
|
|
|
|
- "loss": "cross_entropy",
|
|
|
|
|
- "optimizer": "torch.optim.ASGD", # use an optimizer by factory
|
|
|
|
|
- "criterion_params": {},
|
|
|
|
|
- "optimizer_params": {"lambd": 0.0001, "alpha": 0.75},
|
|
|
|
|
- "train_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
|
|
|
|
|
- "valid_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
|
|
|
|
|
- "metric_to_watch": "Accuracy",
|
|
|
|
|
- "greater_metric_to_watch_is_better": True}
|
|
|
|
|
-
|
|
|
|
|
- trainer.train(model=net, training_params=train_params,
|
|
|
|
|
- train_loader=classification_test_dataloader(),
|
|
|
|
|
- valid_loader=classification_test_dataloader())
|
|
|
|
|
|
|
+ train_params = {
|
|
|
|
|
+ "max_epochs": 2,
|
|
|
|
|
+ "lr_updates": [1],
|
|
|
|
|
+ "lr_decay_factor": 0.1,
|
|
|
|
|
+ "lr_mode": "step",
|
|
|
|
|
+ "lr_warmup_epochs": 0,
|
|
|
|
|
+ "initial_lr": 0.1,
|
|
|
|
|
+ "loss": "cross_entropy",
|
|
|
|
|
+ "optimizer": "torch.optim.ASGD", # use an optimizer by factory
|
|
|
|
|
+ "criterion_params": {},
|
|
|
|
|
+ "optimizer_params": {"lambd": 0.0001, "alpha": 0.75},
|
|
|
|
|
+ "train_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
|
|
|
|
|
+ "valid_metrics_list": ["Accuracy", "Top5"], # use a metric by factory
|
|
|
|
|
+ "metric_to_watch": "Accuracy",
|
|
|
|
|
+ "greater_metric_to_watch_is_better": True,
|
|
|
|
|
+ }
|
|
|
|
|
+
|
|
|
|
|
+ trainer.train(model=net, training_params=train_params, train_loader=classification_test_dataloader(), valid_loader=classification_test_dataloader())
|
|
|
|
|
|
|
|
self.assertIsInstance(trainer.train_metrics.Accuracy, Accuracy)
|
|
self.assertIsInstance(trainer.train_metrics.Accuracy, Accuracy)
|
|
|
self.assertIsInstance(trainer.valid_metrics.Top5, Top5)
|
|
self.assertIsInstance(trainer.valid_metrics.Top5, Top5)
|
|
@@ -50,5 +49,5 @@ class FactoriesTest(unittest.TestCase):
|
|
|
self.assertIsInstance(model.activation_in_head, nn.LeakyReLU)
|
|
self.assertIsInstance(model.activation_in_head, nn.LeakyReLU)
|
|
|
|
|
|
|
|
|
|
|
|
|
-if __name__ == '__main__':
|
|
|
|
|
|
|
+if __name__ == "__main__":
|
|
|
unittest.main()
|
|
unittest.main()
|