Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#481 Feature/alg 287 refactor ssd

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/ALG-287_refactor-ssd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
  1. # SSD MobileNetV2 Detection training on CoCo2017 Dataset:
  2. # Trained in 320x320 mAP@0.5@0.95 (COCO API, confidence 0.001, IoU threshold 0.6, test on 320x320 images) ~20.52
  3. # Checkpoint path: https://deci-pretrained-models.s3.amazonaws.com/ssd_lite_mobilenet_v2_coco_res320_new_coco_filtered_affine_scale_5_15_no_mosaic/ckpt_best.pth
  4. # (trained with stride_16_plus_big)
  5. # Hardware: 8 NVIDIA RTX 3090
  6. # Training time: ±17 hours
  7. #
  8. # Instructions:
  9. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  10. # 1. Move to the project root (where you will find the ReadMe and src folder)
  11. # 2. Run the command:
  12. # python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_ssd_lite_mobilenet_v2
  13. # NOTE:
  14. # Anchors will be selected based on validation resolution and anchors_name
  15. # To switch between anchors, set anchors_name to something else defined in the anchors section
  16. # e.g.
  17. # python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=coco2017_ssd_lite_mobilenet_v2 anchors_name=stride_16_plus
  18. defaults:
  19. - training_hyperparams: coco2017_ssd_lite_mobilenet_v2_train_params
  20. - dataset_params: coco_detection_ssd_lite_mobilenet_v2_dataset_params
  21. - checkpoint_params: default_checkpoint_params
  22. - anchors: ssd_anchors
  23. train_dataloader: coco2017_train
  24. val_dataloader: coco2017_val
  25. architecture: ssd_lite_mobilenet_v2
  26. data_loader_num_workers: 8
  27. experiment_suffix: res${dataset_params.train_image_size}
  28. experiment_name: ${architecture}_coco_${experiment_suffix}
  29. anchors_resolution: ${dataset_params.val_image_size}x${dataset_params.val_image_size}
  30. anchors_name: stride_16_plus_big
  31. dboxes: ${anchors.${anchors_resolution}.${anchors_name}}
  32. arch_params:
  33. num_classes: 80
  34. anchors: ${dboxes}
  35. resume: False
  36. training_hyperparams:
  37. resume: ${resume}
  38. criterion_params:
  39. alpha: 1.0
  40. dboxes: ${dboxes}
  41. multi_gpu: DDP
  42. num_gpus: 8
  43. ckpt_root_dir:
  44. # THE FOLLOWING PARAMS ARE DIRECTLY USED BY HYDRA
  45. hydra:
  46. run:
  47. # Set the output directory (i.e. where .hydra folder that logs all the input params will be generated)
  48. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file