1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
- from super_gradients.training.models import ResNeXt50, ResNeXt101, GoogleNetV1
- from super_gradients.training.models.classification_models import repvgg, efficientnet, densenet, resnet, regnet
- from super_gradients.training.models.classification_models.mobilenetv2 import MobileNetV2Base, MobileNetV2_135, \
- CustomMobileNetV2
- from super_gradients.training.models.classification_models.mobilenetv3 import mobilenetv3_large, mobilenetv3_small, \
- mobilenetv3_custom
- from super_gradients.training.models.classification_models.shufflenetv2 import ShufflenetV2_x0_5, ShufflenetV2_x1_0, \
- ShufflenetV2_x1_5, \
- ShufflenetV2_x2_0, CustomizedShuffleNetV2
- from super_gradients.training.models.classification_models.vit import ViTBase, ViTLarge, ViTHuge
- from super_gradients.training.models.detection_models.csp_darknet53 import CSPDarknet53
- from super_gradients.training.models.detection_models.darknet53 import Darknet53
- from super_gradients.training.models.detection_models.ssd import SSDMobileNetV1, SSDLiteMobileNetV2
- from super_gradients.training.models.detection_models.yolox import YoloX_N, YoloX_T, YoloX_S, YoloX_M, YoloX_L, YoloX_X, CustomYoloX
- from super_gradients.training.models.segmentation_models.ddrnet import DDRNet23, DDRNet23Slim, AnyBackBoneDDRNet23
- from super_gradients.training.models.segmentation_models.regseg import RegSeg48
- from super_gradients.training.models.segmentation_models.shelfnet import ShelfNet18_LW, ShelfNet34_LW, ShelfNet50, \
- ShelfNet503343, ShelfNet101
- from super_gradients.training.models.segmentation_models.stdc import STDC1Classification, STDC2Classification, \
- STDC1Seg, STDC2Seg, STDCSegmentationBase
- from super_gradients.training.models.kd_modules.kd_module import KDModule
- from super_gradients.training.models.classification_models.beit import BeitBasePatch16_224, BeitLargePatch16_224
- from super_gradients.training.models.segmentation_models.ppliteseg import PPLiteSegT, PPLiteSegB
- from super_gradients.common.object_names import Models
- ARCHITECTURES = {Models.RESNET18: resnet.ResNet18,
- Models.RESNET34: resnet.ResNet34,
- Models.RESNET50_3343: resnet.ResNet50_3343,
- Models.RESNET50: resnet.ResNet50,
- Models.RESNET101: resnet.ResNet101,
- Models.RESNET152: resnet.ResNet152,
- Models.RESNET18_CIFAR: resnet.ResNet18Cifar,
- Models.CUSTOM_RESNET: resnet.CustomizedResnet,
- Models.CUSTOM_RESNET50: resnet.CustomizedResnet50,
- Models.CUSTOM_RESNET_CIFAR: resnet.CustomizedResnetCifar,
- Models.CUSTOM_RESNET50_CIFAR: resnet.CustomizedResnet50Cifar,
- Models.MOBILENET_V2: MobileNetV2Base,
- Models.MOBILE_NET_V2_135: MobileNetV2_135,
- Models.CUSTOM_MOBILENET_V2: CustomMobileNetV2,
- Models.MOBILENET_V3_LARGE: mobilenetv3_large,
- Models.MOBILENET_V3_SMALL: mobilenetv3_small,
- Models.MOBILENET_V3_CUSTOM: mobilenetv3_custom,
- Models.CUSTOM_DENSENET: densenet.CustomizedDensnet,
- Models.DENSENET121: densenet.DenseNet121,
- Models.DENSENET161: densenet.DenseNet161,
- Models.DENSENET169: densenet.DenseNet169,
- Models.DENSENET201: densenet.DenseNet201,
- Models.SHELFNET18_LW: ShelfNet18_LW,
- Models.SHELFNET34_LW: ShelfNet34_LW,
- Models.SHELFNET50_3343: ShelfNet503343,
- Models.SHELFNET50: ShelfNet50,
- Models.SHELFNET101: ShelfNet101,
- Models.SHUFFLENET_V2_X0_5: ShufflenetV2_x0_5,
- Models.SHUFFLENET_V2_X1_0: ShufflenetV2_x1_0,
- Models.SHUFFLENET_V2_X1_5: ShufflenetV2_x1_5,
- Models.SHUFFLENET_V2_X2_0: ShufflenetV2_x2_0,
- Models.SHUFFLENET_V2_CUSTOM5: CustomizedShuffleNetV2,
- Models.DARKNET53: Darknet53,
- Models.CSP_DARKNET53: CSPDarknet53,
- Models.RESNEXT50: ResNeXt50,
- Models.RESNEXT101: ResNeXt101,
- Models.GOOGLENET_V1: GoogleNetV1,
- Models.EFFICIENTNET_B0: efficientnet.EfficientNetB0,
- Models.EFFICIENTNET_B1: efficientnet.EfficientNetB1,
- Models.EFFICIENTNET_B2: efficientnet.EfficientNetB2,
- Models.EFFICIENTNET_B3: efficientnet.EfficientNetB3,
- Models.EFFICIENTNET_B4: efficientnet.EfficientNetB4,
- Models.EFFICIENTNET_B5: efficientnet.EfficientNetB5,
- Models.EFFICIENTNET_B6: efficientnet.EfficientNetB6,
- Models.EFFICIENTNET_B7: efficientnet.EfficientNetB7,
- Models.EFFICIENTNET_B8: efficientnet.EfficientNetB8,
- Models.EFFICIENTNET_L2: efficientnet.EfficientNetL2,
- Models.CUSTOMIZEDEFFICIENTNET: efficientnet.CustomizedEfficientnet,
- Models.REGNETY200: regnet.RegNetY200,
- Models.REGNETY400: regnet.RegNetY400,
- Models.REGNETY600: regnet.RegNetY600,
- Models.REGNETY800: regnet.RegNetY800,
- Models.CUSTOM_REGNET: regnet.CustomRegNet,
- Models.NAS_REGNET: regnet.NASRegNet,
- Models.YOLOX_N: YoloX_N,
- Models.YOLOX_T: YoloX_T,
- Models.YOLOX_S: YoloX_S,
- Models.YOLOX_M: YoloX_M,
- Models.YOLOX_L: YoloX_L,
- Models.YOLOX_X: YoloX_X,
- Models.CUSTOM_YOLO_X: CustomYoloX,
- Models.SSD_MOBILENET_V1: SSDMobileNetV1,
- Models.SSD_LITE_MOBILENET_V2: SSDLiteMobileNetV2,
- Models.REPVGG_A0: repvgg.RepVggA0,
- Models.REPVGG_A1: repvgg.RepVggA1,
- Models.REPVGG_A2: repvgg.RepVggA2,
- Models.REPVGG_B0: repvgg.RepVggB0,
- Models.REPVGG_B1: repvgg.RepVggB1,
- Models.REPVGG_B2: repvgg.RepVggB2,
- Models.REPVGG_B3: repvgg.RepVggB3,
- Models.REPVGG_D2SE: repvgg.RepVggD2SE,
- Models.REPVGG_CUSTOM: repvgg.RepVggCustom,
- Models.DDRNET_23: DDRNet23,
- Models.DDRNET_23_SLIM: DDRNet23Slim,
- Models.CUSTOM_DDRNET_23: AnyBackBoneDDRNet23,
- Models.STDC1_CLASSIFICATION: STDC1Classification,
- Models.STDC2_CLASSIFICATION: STDC2Classification,
- Models.STDC1_SEG: STDC1Seg,
- Models.STDC1_SEG50: STDC1Seg,
- Models.STDC1_SEG75: STDC1Seg,
- Models.STDC2_SEG: STDC2Seg,
- Models.STDC2_SEG50: STDC2Seg,
- Models.STDC2_SEG75: STDC2Seg,
- Models.CUSTOM_STDC: STDCSegmentationBase,
- Models.REGSEG48: RegSeg48,
- Models.KD_MODULE: KDModule,
- Models.VIT_BASE: ViTBase,
- Models.VIT_LARGE: ViTLarge,
- Models.VIT_HUGE: ViTHuge,
- Models.BEIT_BASE_PATCH16_224: BeitBasePatch16_224,
- Models.BEIT_LARGE_PATCH16_224: BeitLargePatch16_224,
- Models.PP_LITE_T_SEG: PPLiteSegT,
- Models.PP_LITE_T_SEG50: PPLiteSegT,
- Models.PP_LITE_T_SEG75: PPLiteSegT,
- Models.PP_LITE_B_SEG: PPLiteSegB,
- Models.PP_LITE_B_SEG50: PPLiteSegB,
- Models.PP_LITE_B_SEG75: PPLiteSegB,
- Models.CUSTOM_ANYNET: regnet.CustomAnyNet,
- }
- KD_ARCHITECTURES = {
- Models.KD_MODULE: KDModule
- }
|