Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#433 Feature/SG 143 black formatter

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-143-black-formatter
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
  1. # Cifar10 Classification Training:
  2. # Reaches ~94.9 Accuracy after 250 Epochs
  3. # Instructions:
  4. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  5. # 1. Move to the project root (where you will find the ReadMe and src folder)
  6. # 2. Run the command:
  7. # python src/super_gradients/examples/train_from_recipe_example/train_from_recipe.py --config-name=cifar10_resnet +experiment_name=cifar10
  8. defaults:
  9. - training_hyperparams: cifar10_resnet_train_params
  10. - dataset_params: cifar10_dataset_params
  11. - arch_params: resnet18_cifar_arch_params
  12. - checkpoint_params: default_checkpoint_params
  13. train_dataloader: cifar10_train
  14. val_dataloader: cifar10_val
  15. data_loader_num_workers: 8
  16. resume: False
  17. training_hyperparams:
  18. resume: ${resume}
  19. ckpt_root_dir:
  20. architecture: resnet18_cifar
  21. experiment_name: resnet18_cifar
  22. # THE FOLLOWING PARAMS ARE DIRECTLY USED BY HYDRA
  23. hydra:
  24. run:
  25. # Set the output directory (i.e. where .hydra folder that logs all the input params will be generated)
  26. dir: ${hydra_output_dir:${ckpt_root_dir}, ${experiment_name}}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file