Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#404 Sg/readme update img

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:SG/README_update_img
@@ -1,5 +1,5 @@
 <div align="center">
 <div align="center">
-  <img src="docs/assets/SG_img/SG - Horizontal.png" width="600"/>
+  <img src="docs/assets/SG_img/SG - Horizontal Glow 2.png" width="600"/>
  <br/><br/>
  <br/><br/>
   
   
 **Build, train, and fine-tune production-ready deep learning  SOTA vision models**
 **Build, train, and fine-tune production-ready deep learning  SOTA vision models**
@@ -51,22 +51,22 @@ model = models.get("yolox_s", pretrained_weights="coco")
 
 
 #### Classification
 #### Classification
 <div align="center">
 <div align="center">
-<img src="./docs/assets/SG_img/Classification@2x.png" width="800px">
+<img src="./docs/assets/SG_img/Classification@2xDark.png" width="800px">
 </div>
 </div>
 
 
 #### Semantic Segmentation
 #### Semantic Segmentation
 <div align="center">
 <div align="center">
-<img src="./docs/assets/SG_img/Semantic Segmentation@2x.png" width="800px">
+<img src="./docs/assets/SG_img/Semantic Segmentation@2xDark.png" width="800px">
 </div>
 </div>
 
 
 #### Object Detection 
 #### Object Detection 
 <div align="center">
 <div align="center">
-<img src="./docs/assets/SG_img/Object Detection@2x.png" width="800px">
+<img src="./docs/assets/SG_img/Object Detection@2xDark.png" width="800px">
 </div>
 </div>
 
 
 
 
 
 
-All Computer Vision Models - Pretrained Checkpoints can be found [here](docs/assets/SG_img/Computer_Vision_Models_Pretrained_Checkpoints.md)
+All Computer Vision Models - Pretrained Checkpoints can be found [here](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md)
 
 
 
 
 ### Easy to train SOTA Models
 ### Easy to train SOTA Models
@@ -88,7 +88,12 @@ All SuperGradients models’ are production ready in the sense that they are com
 # Load model with pretrained weights
 # Load model with pretrained weights
 model = models.get("yolox_s", pretrained_weights="coco")
 model = models.get("yolox_s", pretrained_weights="coco")
 
 
-# Prepare model for conversion & create dummy_input
+# Prepare model for conversion
+# Input size is in format of [Batch x Channels x Width x Height] where 640 is the standart COCO dataset dimensions
+model.eval()
+model.prep_model_for_conversion(input_size=[1, 3, 640, 640])
+    
+# Create dummy_input
 
 
 # Convert model to onnx
 # Convert model to onnx
 torch.onnx.export(model, dummy_input,  "yolox_s.onnx")
 torch.onnx.export(model, dummy_input,  "yolox_s.onnx")
@@ -106,11 +111,11 @@ pip install super-gradients
 
 
 ## What's New
 ## What's New
 __________________________________________________________________________________________________________
 __________________________________________________________________________________________________________
-* 【06/9/2022】 PP-LiteSeg - new pre-trained [checkpoints](docs/assets/SG_img/Computer_Vision_Models_Pretrained_Checkpoints.md)  for Cityscapes with SOTA mIoU scores (~1.5% above paper)🎯
-* 【07/08/2022】DDRNet23 -  new pre-trained [checkpoints](docs/assets/SG_img/Computer_Vision_Models_Pretrained_Checkpoints.md) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with SOTA mIoU scores (~1% above paper)🎯
+* 【06/9/2022】 PP-LiteSeg - new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md)  for Cityscapes with SOTA mIoU scores (~1.5% above paper)🎯
+* 【07/08/2022】DDRNet23 -  new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with SOTA mIoU scores (~1% above paper)🎯
 * 【27/07/2022】YOLOX models (object detection) - recipes and pre-trained checkpoints.
 * 【27/07/2022】YOLOX models (object detection) - recipes and pre-trained checkpoints.
-* 【07/07/2022】SSD Lite MobileNet V2,V1 - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/coco_ssd_lite_mobilenet_v2.yaml) and pre-trained [checkpoints](docs/assets/SG_img/Computer_Vision_Models_Pretrained_Checkpoints.md) on COCO - Tailored for edge devices! 📱
-* 【07/07/2022】 STDC  - new pre-trained [checkpoints](docs/assets/SG_img/Computer_Vision_Models_Pretrained_Checkpoints.md) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with super SOTA mIoU scores (~2.5% above paper)🎯
+* 【07/07/2022】SSD Lite MobileNet V2,V1 - Training [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes/coco_ssd_lite_mobilenet_v2.yaml) and pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) on COCO - Tailored for edge devices! 📱
+* 【07/07/2022】 STDC  - new pre-trained [checkpoints](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md) and [recipes](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/recipes) for Cityscapes with super SOTA mIoU scores (~2.5% above paper)🎯
 
 
 Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
 Check out SG full [release notes](https://github.com/Deci-AI/super-gradients/releases).
 
 
@@ -151,7 +156,7 @@ The most simple and straightforward way to start training SOTA performance model
 python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800 dataset_interface.data_dir=<YOUR_Imagenet_LOCAL_PATH> ckpt_root_dir=<CHEKPOINT_DIRECTORY>
 python -m super_gradients.train_from_recipe --config-name=imagenet_regnetY architecture=regnetY800 dataset_interface.data_dir=<YOUR_Imagenet_LOCAL_PATH> ckpt_root_dir=<CHEKPOINT_DIRECTORY>
 ```
 ```
 ### Quickly Load Pre-Trained Weights for Your Desired Model with SOTA Performance
 ### Quickly Load Pre-Trained Weights for Your Desired Model with SOTA Performance
-Want to try our pre-trained models on your machine? Import SuperGradients, initialize your Trainer, and load your desired architecture and pre-trained weights from our [SOTA model zoo](docs/assets/SG_img/Computer_Vision_Models_Pretrained_Checkpoints.md)
+Want to try our pre-trained models on your machine? Import SuperGradients, initialize your Trainer, and load your desired architecture and pre-trained weights from our [SOTA model zoo](src/super_gradients/training/Computer_Vision_Models_Pretrained_Checkpoints.md)
 
 
 ```python
 ```python
 # The pretrained_weights argument will load a pre-trained architecture on the provided dataset
 # The pretrained_weights argument will load a pre-trained architecture on the provided dataset
@@ -165,10 +170,10 @@ model = models.get("model-name", pretrained_weights="pretrained-model-name")
 
 
 #### Transfer Learning 
 #### Transfer Learning 
   <table class="tfo-notebook-buttons" align="left">
   <table class="tfo-notebook-buttons" align="left">
- <td>  
+ <td width="500">  
   <a target="_blank" href="https://bit.ly/3xzIutb"><img src="./docs/assets/SG_img/colab_logo.png" /> Classification Transfer Learning</a>
   <a target="_blank" href="https://bit.ly/3xzIutb"><img src="./docs/assets/SG_img/colab_logo.png" /> Classification Transfer Learning</a>
   </td>
   </td>
- <td>    
+ <td width="200">    
  <a target="_blank" href="https://bit.ly/3xwYEn1"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  <a target="_blank" href="https://bit.ly/3xwYEn1"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
@@ -179,10 +184,10 @@ model = models.get("model-name", pretrained_weights="pretrained-model-name")
 
 
 ####  Quick Start 
 ####  Quick Start 
 <table class="tfo-notebook-buttons" align="left">
 <table class="tfo-notebook-buttons" align="left">
- <td>
+ <td width="500">
 <a target="_blank" href="https://bit.ly/3qKx9m8"><img src="./docs/assets/SG_img/colab_logo.png" /> Segmentation Quick Start</a>
 <a target="_blank" href="https://bit.ly/3qKx9m8"><img src="./docs/assets/SG_img/colab_logo.png" /> Segmentation Quick Start</a>
  </td>
  </td>
- <td>
+ <td width="200">
 <a target="_blank" href="https://bit.ly/3qJjxYq"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source </a>
 <a target="_blank" href="https://bit.ly/3qJjxYq"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source </a>
  </td>
  </td>
 </table>
 </table>
@@ -192,10 +197,10 @@ model = models.get("model-name", pretrained_weights="pretrained-model-name")
  
  
  ####  Transfer Learning 
  ####  Transfer Learning 
 <table class="tfo-notebook-buttons" align="left">
 <table class="tfo-notebook-buttons" align="left">
- <td>
+ <td width="500">
 <a target="_blank" href="https://bit.ly/3qKwMbe"><img src="./docs/assets/SG_img/colab_logo.png" /> Segmentation Transfer Learning</a>
 <a target="_blank" href="https://bit.ly/3qKwMbe"><img src="./docs/assets/SG_img/colab_logo.png" /> Segmentation Transfer Learning</a>
  </td>
  </td>
- <td>
+ <td width="200">
 <a target="_blank" href="https://bit.ly/3ShJlXn"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
 <a target="_blank" href="https://bit.ly/3ShJlXn"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
@@ -205,10 +210,10 @@ model = models.get("model-name", pretrained_weights="pretrained-model-name")
 
 
 ####  How to Connect Custom Dataset 
 ####  How to Connect Custom Dataset 
   <table class="tfo-notebook-buttons" align="left">
   <table class="tfo-notebook-buttons" align="left">
- <td> 
+ <td width="500"> 
 <a target="_blank" href="https://bit.ly/3QQBVJp"><img src="./docs/assets/SG_img/colab_logo.png" /> Segmentation How to Connect Custom Dataset</a>
 <a target="_blank" href="https://bit.ly/3QQBVJp"><img src="./docs/assets/SG_img/colab_logo.png" /> Segmentation How to Connect Custom Dataset</a>
    </td>
    </td>
- <td>
+ <td width="200">
  <a target="_blank" href="https://bit.ly/3Us2WGi"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  <a target="_blank" href="https://bit.ly/3Us2WGi"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
@@ -221,10 +226,10 @@ model = models.get("model-name", pretrained_weights="pretrained-model-name")
 
 
 #### Transfer Learning
 #### Transfer Learning
   <table class="tfo-notebook-buttons" align="left">
   <table class="tfo-notebook-buttons" align="left">
- <td>   
+ <td width="500">   
 <a target="_blank" href="https://bit.ly/3SkMohx"><img src="./docs/assets/SG_img/colab_logo.png" /> Detection Transfer Learning</a>
 <a target="_blank" href="https://bit.ly/3SkMohx"><img src="./docs/assets/SG_img/colab_logo.png" /> Detection Transfer Learning</a>
    </td>
    </td>
- <td>   
+ <td width="200">   
 <a target="_blank" href="https://bit.ly/3DF8siG"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
 <a target="_blank" href="https://bit.ly/3DF8siG"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
@@ -232,10 +237,10 @@ model = models.get("model-name", pretrained_weights="pretrained-model-name")
 
 
 #### How to Connect Custom Dataset 
 #### How to Connect Custom Dataset 
   <table class="tfo-notebook-buttons" align="left">
   <table class="tfo-notebook-buttons" align="left">
- <td>  
+ <td width="500">  
   <a target="_blank" href="https://bit.ly/3dqDlg3"><img src="./docs/assets/SG_img/colab_logo.png" /> Detection How to Connect Custom Dataset</a>
   <a target="_blank" href="https://bit.ly/3dqDlg3"><img src="./docs/assets/SG_img/colab_logo.png" /> Detection How to Connect Custom Dataset</a>
   </td>
   </td>
- <td>      
+ <td width="200">      
 <a target="_blank" href="https://bit.ly/3xBlcmq"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
 <a target="_blank" href="https://bit.ly/3xBlcmq"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
@@ -247,10 +252,10 @@ model = models.get("model-name", pretrained_weights="pretrained-model-name")
 
 
 #### Segmentation, Detection and Classification Prediction 
 #### Segmentation, Detection and Classification Prediction 
   <table class="tfo-notebook-buttons" align="left">
   <table class="tfo-notebook-buttons" align="left">
- <td>    
+ <td width="500">    
 <a target="_blank" href="https://bit.ly/3f4mssd"><img src="./docs/assets/SG_img/colab_logo.png" /> How to Predict Using Pre-trained Model</a>
 <a target="_blank" href="https://bit.ly/3f4mssd"><img src="./docs/assets/SG_img/colab_logo.png" /> How to Predict Using Pre-trained Model</a>
   </td>
   </td>
- <td>   
+ <td width="200">   
 <a target="_blank" href="https://bit.ly/3Sf59Tr"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
 <a target="_blank" href="https://bit.ly/3Sf59Tr"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
@@ -263,10 +268,10 @@ ________________________________________________________________________________
 Knowledge Distillation is a training technique that uses a large model, teacher model, to improve the performance of a smaller model, the student model.
 Knowledge Distillation is a training technique that uses a large model, teacher model, to improve the performance of a smaller model, the student model.
 Learn more about SuperGradients knowledge distillation training with our pre-trained BEiT base teacher model and Resnet18 student model on CIFAR10 example notebook on Google Colab for an easy to use tutorial using free GPU hardware
 Learn more about SuperGradients knowledge distillation training with our pre-trained BEiT base teacher model and Resnet18 student model on CIFAR10 example notebook on Google Colab for an easy to use tutorial using free GPU hardware
   <table class="tfo-notebook-buttons" align="left">
   <table class="tfo-notebook-buttons" align="left">
- <td>   
+ <td width="500">   
    <a target="_blank" href="https://bit.ly/3BLA5oR"><img src="./docs/assets/SG_img/colab_logo.png" /> Knowledge Distillation Training</a>
    <a target="_blank" href="https://bit.ly/3BLA5oR"><img src="./docs/assets/SG_img/colab_logo.png" /> Knowledge Distillation Training</a>
   </td>
   </td>
- <td>   
+ <td width="200">   
 <a target="_blank" href="https://bit.ly/3S9UlG4"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
 <a target="_blank" href="https://bit.ly/3S9UlG4"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
@@ -274,12 +279,12 @@ Learn more about SuperGradients knowledge distillation training with our pre-tra
 
 
 ### Recipes
 ### Recipes
 To train a model, it is necessary to configure 4 main components. These components are aggregated into a single "main" recipe `.yaml` file that inherits the aforementioned dataset, architecture, raining and checkpoint params. It is also possible (and recomended for flexibility) to override default settings with custom ones.
 To train a model, it is necessary to configure 4 main components. These components are aggregated into a single "main" recipe `.yaml` file that inherits the aforementioned dataset, architecture, raining and checkpoint params. It is also possible (and recomended for flexibility) to override default settings with custom ones.
-All recipes can be found [here](docs/assets/SG_img/Training_Recipes.md)
+All recipes can be found [here](src/super_gradients/recipes/Training_Recipes.md)
   <table class="tfo-notebook-buttons" align="left">
   <table class="tfo-notebook-buttons" align="left">
- <td>   
+ <td width="500">   
    <a target="_blank" href="https://bit.ly/3UiY5ab"><img src="./docs/assets/SG_img/colab_logo.png" /> How to Use Recipes</a>
    <a target="_blank" href="https://bit.ly/3UiY5ab"><img src="./docs/assets/SG_img/colab_logo.png" /> How to Use Recipes</a>
   </td>
   </td>
- <td>  
+ <td width="200">  
 <a target="_blank" href="https://bit.ly/3QSrHbm"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
 <a target="_blank" href="https://bit.ly/3QSrHbm"><img src="./docs/assets/SG_img/GitHub_logo.png" /> GitHub source</a>
  </td>
  </td>
 </table>
 </table>
@@ -413,7 +418,7 @@ pip install git+https://github.com/Deci-AI/super-gradients.git@stable
 ## Implemented Model Architectures 
 ## Implemented Model Architectures 
 __________________________________________________________________________________________________________
 __________________________________________________________________________________________________________
 
 
-Detailed list can be found [here](docs/assets/SG_img/Implemented%20Model%20Architectures.md) 
+Detailed list can be found [here](src/super_gradients/training/models/Implemented%20Model%20Architectures.md) 
 
 
 ### Image Classification
 ### Image Classification
   
   
@@ -437,7 +442,7 @@ Detailed list can be found [here](docs/assets/SG_img/Implemented%20Model%20Archi
   
   
 ### Semantic Segmentation 
 ### Semantic Segmentation 
 
 
-- [PP-LiteSeg](https://bit.ly/3RrtMMO) - [https://arxiv.org/pdf/2204.02681v1.pdf](https://arxiv.org/pdf/2204.02681v1.pdf) 
+- [PP-LiteSeg](https://bit.ly/3RrtMMO)
 - [DDRNet (Deep Dual-resolution Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/ddrnet.py) 
 - [DDRNet (Deep Dual-resolution Networks)](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/ddrnet.py) 
 - [LadderNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/laddernet.py)
 - [LadderNet](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/laddernet.py)
 - [RegSeg](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/regseg.py)
 - [RegSeg](https://github.com/Deci-AI/super-gradients/blob/master/src/super_gradients/training/models/segmentation_models/regseg.py)
Discard
Discard
Discard
Metadata:
Discard
Metadata:
Discard
Discard
Discard
Discard
Discard