Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#344 Feature/sg 255 add class for supported strings

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-255-add_class_for_supported_strings
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
  1. import unittest
  2. from torch import Tensor
  3. from torchmetrics import Accuracy
  4. import torch
  5. from super_gradients import Trainer
  6. from super_gradients.training import models
  7. from super_gradients.training.dataloaders.dataloaders import classification_test_dataloader
  8. class CriterionWithUnnamedComponents(torch.nn.CrossEntropyLoss):
  9. def __init__(self):
  10. super(CriterionWithUnnamedComponents, self).__init__()
  11. def forward(self, input: Tensor, target: Tensor) -> tuple:
  12. loss = super(CriterionWithUnnamedComponents, self).forward(input=input, target=target)
  13. items = torch.cat((loss.unsqueeze(0), loss.unsqueeze(0))).detach()
  14. return loss, items
  15. class CriterionWithNamedComponents(CriterionWithUnnamedComponents):
  16. def __init__(self):
  17. super(CriterionWithNamedComponents, self).__init__()
  18. self.component_names = ["loss_A", "loss_B"]
  19. class LossLoggingsTest(unittest.TestCase):
  20. def test_single_item_logging(self):
  21. trainer = Trainer("test_single_item_logging", model_checkpoints_location='local')
  22. dataloader = classification_test_dataloader(batch_size=10)
  23. model = models.get("resnet18", arch_params={"num_classes": 5})
  24. train_params = {"max_epochs": 1, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
  25. "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": torch.nn.CrossEntropyLoss(),
  26. "optimizer": "SGD",
  27. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  28. "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
  29. "metric_to_watch": "Accuracy",
  30. "greater_metric_to_watch_is_better": True}
  31. trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
  32. self.assertListEqual(trainer.loss_logging_items_names, ["CrossEntropyLoss"])
  33. def test_multiple_unnamed_components_loss_logging(self):
  34. trainer = Trainer("test_multiple_unnamed_components_loss_logging", model_checkpoints_location='local')
  35. dataloader = classification_test_dataloader(batch_size=10)
  36. model = models.get("resnet18", arch_params={"num_classes": 5})
  37. train_params = {"max_epochs": 1, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
  38. "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": CriterionWithUnnamedComponents(),
  39. "optimizer": "SGD",
  40. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  41. "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
  42. "metric_to_watch": "Accuracy",
  43. "greater_metric_to_watch_is_better": True}
  44. trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
  45. self.assertListEqual(trainer.loss_logging_items_names, ["CriterionWithUnnamedComponents/loss_0",
  46. "CriterionWithUnnamedComponents/loss_1"])
  47. def test_multiple_named_components_loss_logging(self):
  48. trainer = Trainer("test_multiple_named_components_loss_logging", model_checkpoints_location='local')
  49. dataloader = classification_test_dataloader(batch_size=10)
  50. model = models.get("resnet18", arch_params={"num_classes": 5})
  51. train_params = {"max_epochs": 1, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
  52. "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": CriterionWithNamedComponents(),
  53. "optimizer": "SGD",
  54. "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
  55. "train_metrics_list": [Accuracy()], "valid_metrics_list": [Accuracy()],
  56. "metric_to_watch": "Accuracy",
  57. "greater_metric_to_watch_is_better": True}
  58. trainer.train(model=model, training_params=train_params, train_loader=dataloader, valid_loader=dataloader)
  59. self.assertListEqual(trainer.loss_logging_items_names, ["CriterionWithNamedComponents/loss_A",
  60. "CriterionWithNamedComponents/loss_B"])
  61. if __name__ == '__main__':
  62. unittest.main()
Discard
Tip!

Press p or to see the previous file or, n or to see the next file