Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#313 Feature/sg 187 rename sg model

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:feature/SG-187_rename_sg_model
@@ -1,6 +1,6 @@
 import unittest
 import unittest
 import os
 import os
-from super_gradients.training import SgModel
+from super_gradients.training import Trainer
 from super_gradients.training.datasets.dataset_interfaces.dataset_interface import ClassificationTestDatasetInterface
 from super_gradients.training.datasets.dataset_interfaces.dataset_interface import ClassificationTestDatasetInterface
 from super_gradients.training.metrics import Accuracy, Top5
 from super_gradients.training.metrics import Accuracy, Top5
 
 
@@ -18,19 +18,19 @@ class SaveCkptListUnitTest(unittest.TestCase):
                         "greater_metric_to_watch_is_better": True}
                         "greater_metric_to_watch_is_better": True}
 
 
         # Define Model
         # Define Model
-        model = SgModel("save_ckpt_test", model_checkpoints_location='local')
+        trainer = Trainer("save_ckpt_test", model_checkpoints_location='local')
 
 
         # Connect Dataset
         # Connect Dataset
         dataset = ClassificationTestDatasetInterface()
         dataset = ClassificationTestDatasetInterface()
-        model.connect_dataset_interface(dataset, data_loader_num_workers=8)
+        trainer.connect_dataset_interface(dataset, data_loader_num_workers=8)
 
 
         # Build Model
         # Build Model
-        model.build_model("resnet18_cifar")
+        trainer.build_model("resnet18_cifar")
 
 
         # Train Model (and save ckpt_epoch_list)
         # Train Model (and save ckpt_epoch_list)
-        model.train(training_params=train_params)
+        trainer.train(training_params=train_params)
 
 
-        dir_path = model.checkpoints_dir_path
+        dir_path = trainer.checkpoints_dir_path
         self.file_names_list = [dir_path + f'/ckpt_epoch_{epoch}.pth' for epoch in train_params["save_ckpt_epoch_list"]]
         self.file_names_list = [dir_path + f'/ckpt_epoch_{epoch}.pth' for epoch in train_params["save_ckpt_epoch_list"]]
 
 
     def test_save_ckpt_epoch_list(self):
     def test_save_ckpt_epoch_list(self):
Discard
Tip!

Press p or to see the previous file or, n or to see the next file