1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
- import unittest
- from super_gradients import SgModel, \
- ClassificationTestDatasetInterface
- from super_gradients.training.metrics import Accuracy, Top5
- from super_gradients.training.models import ResNet18
- import os
- import logging
- from super_gradients.common.abstractions.abstract_logger import get_logger
- import shutil
- class SgTrainerLoggingTest(unittest.TestCase):
- def test_train_logging(self):
- model = SgModel("test_train_with_full_log", model_checkpoints_location='local')
- dataset_params = {"batch_size": 10}
- dataset = ClassificationTestDatasetInterface(dataset_params=dataset_params)
- model.connect_dataset_interface(dataset)
- net = ResNet18(num_classes=5, arch_params={})
- model.build_model(net)
- train_params = {"max_epochs": 2, "lr_updates": [1], "lr_decay_factor": 0.1, "lr_mode": "step",
- "lr_warmup_epochs": 0, "initial_lr": 0.1, "loss": "cross_entropy", "optimizer": "SGD",
- "criterion_params": {}, "optimizer_params": {"weight_decay": 1e-4, "momentum": 0.9},
- "train_metrics_list": [Accuracy(), Top5()], "valid_metrics_list": [Accuracy(), Top5()],
- "loss_logging_items_names": ["Loss"], "metric_to_watch": "Accuracy",
- "greater_metric_to_watch_is_better": True,
- "save_full_train_log": True}
- model.train(train_params)
- logfile_path = model.log_file.replace('.txt', 'full_train_log.log')
- assert os.path.exists(logfile_path) and os.path.getsize(logfile_path) > 0
- root_logger_handlers = logging.root.handlers
- assert any(isinstance(handler, logging.handlers.RotatingFileHandler) and handler.baseFilename == logfile_path for handler in root_logger_handlers)
- assert any(isinstance(handler, logging.StreamHandler) and handler.name == 'console' for handler in root_logger_handlers)
- def test_logger_with_non_existing_deci_logs_dir(self):
- user_dir = os.path.expanduser(r"~")
- logs_dir_path = os.path.join(user_dir, 'non_existing_deci_logs_dir')
- if os.path.exists(logs_dir_path):
- shutil.rmtree(logs_dir_path)
- module_name = 'super_gradients.trainer.sg_model'
- _ = get_logger(module_name, training_log_path=None, logs_dir_path=logs_dir_path)
- root_logger_handlers = logging.root.handlers
- assert any(isinstance(handler, logging.StreamHandler) and handler.name == 'console' for handler in root_logger_handlers)
- if __name__ == '__main__':
- unittest.main()
|