|
@@ -80,8 +80,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
"metric_to_watch": "Accuracy",
|
|
"metric_to_watch": "Accuracy",
|
|
"greater_metric_to_watch_is_better": True}
|
|
"greater_metric_to_watch_is_better": True}
|
|
self.coco_pretrained_ckpt_params = {"pretrained_weights": "coco"}
|
|
self.coco_pretrained_ckpt_params = {"pretrained_weights": "coco"}
|
|
- self.coco_pretrained_arch_params = {
|
|
|
|
- 'ssd_lite_mobilenet_v2': {'num_classes': 80},
|
|
|
|
|
|
+ self.coco_pretrained_arch_params = {'ssd_lite_mobilenet_v2': {'num_classes': 80},
|
|
'coco_ssd_mobilenet_v1': {'num_classes': 80}}
|
|
'coco_ssd_mobilenet_v1': {'num_classes': 80}}
|
|
self.coco_pretrained_ckpt_params = {"pretrained_weights": "coco"}
|
|
self.coco_pretrained_ckpt_params = {"pretrained_weights": "coco"}
|
|
self.coco_dataset = {
|
|
self.coco_dataset = {
|
|
@@ -280,7 +279,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('imagenet_pretrained_resnet50', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_resnet50', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("resnet50", arch_params=self.imagenet_pretrained_arch_params["resnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("resnet50", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet50"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet50"], delta=0.001)
|
|
@@ -289,14 +289,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('imagenet_pretrained_resnet50_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_resnet50_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("resnet50", arch_params=self.imagenet_pretrained_arch_params["resnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("resnet50", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_resnet34_imagenet(self):
|
|
def test_pretrained_resnet34_imagenet(self):
|
|
trainer = SgModel('imagenet_pretrained_resnet34', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_resnet34', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("resnet34", arch_params=self.imagenet_pretrained_arch_params["resnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("resnet34", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet34"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet34"], delta=0.001)
|
|
@@ -305,14 +307,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('imagenet_pretrained_resnet34_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_resnet34_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("resnet34", arch_params=self.imagenet_pretrained_arch_params["resnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("resnet34", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_resnet18_imagenet(self):
|
|
def test_pretrained_resnet18_imagenet(self):
|
|
trainer = SgModel('imagenet_pretrained_resnet18', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_resnet18', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("resnet18", arch_params=self.imagenet_pretrained_arch_params["resnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("resnet18", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet18"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["resnet18"], delta=0.001)
|
|
@@ -321,14 +325,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('imagenet_pretrained_resnet18_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_resnet18_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("resnet18", arch_params=self.imagenet_pretrained_arch_params["resnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("resnet18", arch_params=self.imagenet_pretrained_arch_params["resnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_regnetY800_imagenet(self):
|
|
def test_pretrained_regnetY800_imagenet(self):
|
|
trainer = SgModel('imagenet_pretrained_regnetY800', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_regnetY800', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("regnetY800", arch_params=self.imagenet_pretrained_arch_params["regnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("regnetY800", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY800"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY800"], delta=0.001)
|
|
@@ -337,14 +343,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('imagenet_pretrained_regnetY800_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_regnetY800_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("regnetY800", arch_params=self.imagenet_pretrained_arch_params["regnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("regnetY800", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_regnetY600_imagenet(self):
|
|
def test_pretrained_regnetY600_imagenet(self):
|
|
trainer = SgModel('imagenet_pretrained_regnetY600', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_regnetY600', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("regnetY600", arch_params=self.imagenet_pretrained_arch_params["regnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("regnetY600", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY600"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY600"], delta=0.001)
|
|
@@ -353,14 +361,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('imagenet_pretrained_regnetY600_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_regnetY600_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("regnetY600", arch_params=self.imagenet_pretrained_arch_params["regnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("regnetY600", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_regnetY400_imagenet(self):
|
|
def test_pretrained_regnetY400_imagenet(self):
|
|
trainer = SgModel('imagenet_pretrained_regnetY400', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_regnetY400', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("regnetY400", arch_params=self.imagenet_pretrained_arch_params["regnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("regnetY400", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY400"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY400"], delta=0.001)
|
|
@@ -369,14 +379,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('imagenet_pretrained_regnetY400_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_regnetY400_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("regnetY400", arch_params=self.imagenet_pretrained_arch_params["regnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("regnetY400", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_regnetY200_imagenet(self):
|
|
def test_pretrained_regnetY200_imagenet(self):
|
|
trainer = SgModel('imagenet_pretrained_regnetY200', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_regnetY200', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("regnetY200", arch_params=self.imagenet_pretrained_arch_params["regnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("regnetY200", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY200"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["regnetY200"], delta=0.001)
|
|
@@ -385,14 +397,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('imagenet_pretrained_regnetY200_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_regnetY200_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("regnetY200", arch_params=self.imagenet_pretrained_arch_params["regnet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("regnetY200", arch_params=self.imagenet_pretrained_arch_params["regnet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_repvgg_a0_imagenet(self):
|
|
def test_pretrained_repvgg_a0_imagenet(self):
|
|
trainer = SgModel('imagenet_pretrained_repvgg_a0', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_repvgg_a0', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("repvgg_a0", arch_params=self.imagenet_pretrained_arch_params["repvgg_a0"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("repvgg_a0", arch_params=self.imagenet_pretrained_arch_params["repvgg_a0"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["repvgg_a0"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["repvgg_a0"], delta=0.001)
|
|
@@ -401,14 +415,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('imagenet_pretrained_repvgg_a0_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_repvgg_a0_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("repvgg_a0", arch_params=self.imagenet_pretrained_arch_params["repvgg_a0"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("repvgg_a0", arch_params=self.imagenet_pretrained_arch_params["repvgg_a0"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_regseg48_cityscapes(self):
|
|
def test_pretrained_regseg48_cityscapes(self):
|
|
trainer = SgModel('cityscapes_pretrained_regseg48', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_regseg48', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("regseg48", arch_params=self.cityscapes_pretrained_arch_params["regseg48"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("regseg48", arch_params=self.cityscapes_pretrained_arch_params["regseg48"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.cityscapes_dataset.val_loader,
|
|
res = trainer.test(test_loader=self.cityscapes_dataset.val_loader,
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
@@ -418,14 +434,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('regseg48_cityscapes_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('regseg48_cityscapes_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("regseg48", arch_params=self.cityscapes_pretrained_arch_params["regseg48"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("regseg48", arch_params=self.cityscapes_pretrained_arch_params["regseg48"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.regseg_transfer_segmentation_train_params)
|
|
trainer.train(training_params=self.regseg_transfer_segmentation_train_params)
|
|
|
|
|
|
def test_pretrained_ddrnet23_cityscapes(self):
|
|
def test_pretrained_ddrnet23_cityscapes(self):
|
|
trainer = SgModel('cityscapes_pretrained_ddrnet23', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_ddrnet23', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("ddrnet_23", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("ddrnet_23", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.cityscapes_dataset.val_loader,
|
|
res = trainer.test(test_loader=self.cityscapes_dataset.val_loader,
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
@@ -435,7 +453,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('cityscapes_pretrained_ddrnet23_slim', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_ddrnet23_slim', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("ddrnet_23_slim", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("ddrnet_23_slim", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.cityscapes_dataset.val_loader,
|
|
res = trainer.test(test_loader=self.cityscapes_dataset.val_loader,
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
@@ -445,14 +464,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('cityscapes_pretrained_ddrnet23_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_ddrnet23_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("ddrnet_23", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("ddrnet_23", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.ddrnet_transfer_segmentation_train_params)
|
|
trainer.train(training_params=self.ddrnet_transfer_segmentation_train_params)
|
|
|
|
|
|
def test_transfer_learning_ddrnet23_slim_cityscapes(self):
|
|
def test_transfer_learning_ddrnet23_slim_cityscapes(self):
|
|
trainer = SgModel('cityscapes_pretrained_ddrnet23_slim_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_ddrnet23_slim_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("ddrnet_23_slim", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("ddrnet_23_slim", arch_params=self.cityscapes_pretrained_arch_params["ddrnet_23"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.ddrnet_transfer_segmentation_train_params)
|
|
trainer.train(training_params=self.ddrnet_transfer_segmentation_train_params)
|
|
|
|
|
|
def test_pretrained_coco_segmentation_subclass_pretrained_shelfnet34_lw(self):
|
|
def test_pretrained_coco_segmentation_subclass_pretrained_shelfnet34_lw(self):
|
|
@@ -460,7 +481,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.coco_segmentation_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.coco_segmentation_dataset, data_loader_num_workers=8)
|
|
trainer.build_model("shelfnet34_lw",
|
|
trainer.build_model("shelfnet34_lw",
|
|
- arch_params=self.coco_segmentation_subclass_pretrained_arch_params["shelfnet34_lw"], checkpoint_params=self.coco_segmentation_subclass_pretrained_ckpt_params)
|
|
|
|
|
|
+ arch_params=self.coco_segmentation_subclass_pretrained_arch_params["shelfnet34_lw"],
|
|
|
|
+ checkpoint_params=self.coco_segmentation_subclass_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.coco_segmentation_dataset.val_loader, test_metrics_list=[IoU(21)],
|
|
res = trainer.test(test_loader=self.coco_segmentation_dataset.val_loader, test_metrics_list=[IoU(21)],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.coco_segmentation_subclass_pretrained_mious["shelfnet34_lw"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.coco_segmentation_subclass_pretrained_mious["shelfnet34_lw"], delta=0.001)
|
|
@@ -469,7 +491,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('imagenet_pretrained_efficientnet_b0', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_efficientnet_b0', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("efficientnet_b0", arch_params=self.imagenet_pretrained_arch_params["efficientnet_b0"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("efficientnet_b0", arch_params=self.imagenet_pretrained_arch_params["efficientnet_b0"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["efficientnet_b0"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["efficientnet_b0"], delta=0.001)
|
|
@@ -478,7 +501,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('imagenet_pretrained_efficientnet_b0_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_pretrained_efficientnet_b0_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("efficientnet_b0", arch_params=self.imagenet_pretrained_arch_params["efficientnet_b0"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("efficientnet_b0", arch_params=self.imagenet_pretrained_arch_params["efficientnet_b0"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_ssd_lite_mobilenet_v2_coco(self):
|
|
def test_pretrained_ssd_lite_mobilenet_v2_coco(self):
|
|
@@ -517,7 +541,7 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
ssd_post_prediction_callback = SSDPostPredictCallback()
|
|
ssd_post_prediction_callback = SSDPostPredictCallback()
|
|
res = trainer.test(test_loader=self.coco_dataset['ssd_mobilenet'].val_loader,
|
|
res = trainer.test(test_loader=self.coco_dataset['ssd_mobilenet'].val_loader,
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=ssd_post_prediction_callback,
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=ssd_post_prediction_callback,
|
|
- num_cls=len(self.coco_dataset['ssd_mobilenet'].coco_classes))],
|
|
|
|
|
|
+ num_cls=len(self.coco_dataset['ssd_mobilenet'].coco_classes))],
|
|
metrics_progress_verbose=True)[2]
|
|
metrics_progress_verbose=True)[2]
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["coco_ssd_mobilenet_v1"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["coco_ssd_mobilenet_v1"], delta=0.001)
|
|
|
|
|
|
@@ -529,8 +553,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
checkpoint_params=self.coco_pretrained_ckpt_params)
|
|
checkpoint_params=self.coco_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.coco_dataset['yolox'].val_loader,
|
|
res = trainer.test(test_loader=self.coco_dataset['yolox'].val_loader,
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(),
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(),
|
|
- num_cls=80,
|
|
|
|
- normalize_targets=True)])[2]
|
|
|
|
|
|
+ num_cls=80,
|
|
|
|
+ normalize_targets=True)])[2]
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_s"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_s"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_yolox_m_coco(self):
|
|
def test_pretrained_yolox_m_coco(self):
|
|
@@ -541,8 +565,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
checkpoint_params=self.coco_pretrained_ckpt_params)
|
|
checkpoint_params=self.coco_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.coco_dataset['yolox'].val_loader,
|
|
res = trainer.test(test_loader=self.coco_dataset['yolox'].val_loader,
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(),
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(),
|
|
- num_cls=80,
|
|
|
|
- normalize_targets=True)])[2]
|
|
|
|
|
|
+ num_cls=80,
|
|
|
|
+ normalize_targets=True)])[2]
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_m"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_m"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_yolox_l_coco(self):
|
|
def test_pretrained_yolox_l_coco(self):
|
|
@@ -553,8 +577,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
checkpoint_params=self.coco_pretrained_ckpt_params)
|
|
checkpoint_params=self.coco_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.coco_dataset['yolox'].val_loader,
|
|
res = trainer.test(test_loader=self.coco_dataset['yolox'].val_loader,
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(),
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(),
|
|
- num_cls=80,
|
|
|
|
- normalize_targets=True)])[2]
|
|
|
|
|
|
+ num_cls=80,
|
|
|
|
+ normalize_targets=True)])[2]
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_l"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_l"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_yolox_n_coco(self):
|
|
def test_pretrained_yolox_n_coco(self):
|
|
@@ -565,8 +589,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
checkpoint_params=self.coco_pretrained_ckpt_params)
|
|
checkpoint_params=self.coco_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.coco_dataset['yolox'].val_loader,
|
|
res = trainer.test(test_loader=self.coco_dataset['yolox'].val_loader,
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(),
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(),
|
|
- num_cls=80,
|
|
|
|
- normalize_targets=True)])[2]
|
|
|
|
|
|
+ num_cls=80,
|
|
|
|
+ normalize_targets=True)])[2]
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_n"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_n"], delta=0.001)
|
|
|
|
|
|
def test_pretrained_yolox_t_coco(self):
|
|
def test_pretrained_yolox_t_coco(self):
|
|
@@ -577,8 +601,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
checkpoint_params=self.coco_pretrained_ckpt_params)
|
|
checkpoint_params=self.coco_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.coco_dataset['yolox'].val_loader,
|
|
res = trainer.test(test_loader=self.coco_dataset['yolox'].val_loader,
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(),
|
|
test_metrics_list=[DetectionMetrics(post_prediction_callback=YoloPostPredictionCallback(),
|
|
- num_cls=80,
|
|
|
|
- normalize_targets=True)])[2]
|
|
|
|
|
|
+ num_cls=80,
|
|
|
|
+ normalize_targets=True)])[2]
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_t"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.coco_pretrained_maps["yolox_t"], delta=0.001)
|
|
|
|
|
|
def test_transfer_learning_mobilenet_v3_large_imagenet(self):
|
|
def test_transfer_learning_mobilenet_v3_large_imagenet(self):
|
|
@@ -586,14 +610,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
model_checkpoints_location='local',
|
|
model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("mobilenet_v3_large", arch_params=self.imagenet_pretrained_arch_params["mobilenet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("mobilenet_v3_large", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_mobilenet_v3_large_imagenet(self):
|
|
def test_pretrained_mobilenet_v3_large_imagenet(self):
|
|
trainer = SgModel('imagenet_mobilenet_v3_large', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_mobilenet_v3_large', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("mobilenet_v3_large", arch_params=self.imagenet_pretrained_arch_params["mobilenet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("mobilenet_v3_large", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["mobilenet_v3_large"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["mobilenet_v3_large"], delta=0.001)
|
|
@@ -603,14 +629,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
model_checkpoints_location='local',
|
|
model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("mobilenet_v3_small", arch_params=self.imagenet_pretrained_arch_params["mobilenet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("mobilenet_v3_small", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_mobilenet_v3_small_imagenet(self):
|
|
def test_pretrained_mobilenet_v3_small_imagenet(self):
|
|
trainer = SgModel('imagenet_mobilenet_v3_small', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_mobilenet_v3_small', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("mobilenet_v3_small", arch_params=self.imagenet_pretrained_arch_params["mobilenet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("mobilenet_v3_small", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["mobilenet_v3_small"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["mobilenet_v3_small"], delta=0.001)
|
|
@@ -620,14 +648,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
model_checkpoints_location='local',
|
|
model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_classification_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("mobilenet_v2", arch_params=self.imagenet_pretrained_arch_params["mobilenet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("mobilenet_v2", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
trainer.train(training_params=self.transfer_classification_train_params)
|
|
|
|
|
|
def test_pretrained_mobilenet_v2_imagenet(self):
|
|
def test_pretrained_mobilenet_v2_imagenet(self):
|
|
trainer = SgModel('imagenet_mobilenet_v2', model_checkpoints_location='local',
|
|
trainer = SgModel('imagenet_mobilenet_v2', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.imagenet_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("mobilenet_v2", arch_params=self.imagenet_pretrained_arch_params["mobilenet"], checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("mobilenet_v2", arch_params=self.imagenet_pretrained_arch_params["mobilenet"],
|
|
|
|
+ checkpoint_params=self.imagenet_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
res = trainer.test(test_loader=self.imagenet_dataset.val_loader, test_metrics_list=[Accuracy()],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["mobilenet_v2"], delta=0.001)
|
|
self.assertAlmostEqual(res, self.imagenet_pretrained_accuracies["mobilenet_v2"], delta=0.001)
|
|
@@ -636,7 +666,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('cityscapes_pretrained_stdc1_seg50', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_stdc1_seg50', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled50, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled50, data_loader_num_workers=8)
|
|
- trainer.build_model("stdc1_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("stdc1_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.cityscapes_dataset_rescaled50.val_loader,
|
|
res = trainer.test(test_loader=self.cityscapes_dataset_rescaled50.val_loader,
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
@@ -646,14 +677,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('cityscapes_pretrained_stdc1_seg50_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_stdc1_seg50_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("stdc1_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("stdc1_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.stdc_transfer_segmentation_train_params)
|
|
trainer.train(training_params=self.stdc_transfer_segmentation_train_params)
|
|
|
|
|
|
def test_pretrained_stdc1_seg75_cityscapes(self):
|
|
def test_pretrained_stdc1_seg75_cityscapes(self):
|
|
trainer = SgModel('cityscapes_pretrained_stdc1_seg75', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_stdc1_seg75', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled75, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled75, data_loader_num_workers=8)
|
|
- trainer.build_model("stdc1_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("stdc1_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.cityscapes_dataset_rescaled75.val_loader,
|
|
res = trainer.test(test_loader=self.cityscapes_dataset_rescaled75.val_loader,
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
@@ -663,14 +696,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('cityscapes_pretrained_stdc1_seg75_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_stdc1_seg75_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("stdc1_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("stdc1_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.stdc_transfer_segmentation_train_params)
|
|
trainer.train(training_params=self.stdc_transfer_segmentation_train_params)
|
|
|
|
|
|
def test_pretrained_stdc2_seg50_cityscapes(self):
|
|
def test_pretrained_stdc2_seg50_cityscapes(self):
|
|
trainer = SgModel('cityscapes_pretrained_stdc2_seg50', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_stdc2_seg50', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled50, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled50, data_loader_num_workers=8)
|
|
- trainer.build_model("stdc2_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("stdc2_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.cityscapes_dataset_rescaled50.val_loader,
|
|
res = trainer.test(test_loader=self.cityscapes_dataset_rescaled50.val_loader,
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
@@ -680,14 +715,16 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('cityscapes_pretrained_stdc2_seg50_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_stdc2_seg50_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("stdc2_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("stdc2_seg50", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.stdc_transfer_segmentation_train_params)
|
|
trainer.train(training_params=self.stdc_transfer_segmentation_train_params)
|
|
|
|
|
|
def test_pretrained_stdc2_seg75_cityscapes(self):
|
|
def test_pretrained_stdc2_seg75_cityscapes(self):
|
|
trainer = SgModel('cityscapes_pretrained_stdc2_seg75', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_stdc2_seg75', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled75, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.cityscapes_dataset_rescaled75, data_loader_num_workers=8)
|
|
- trainer.build_model("stdc2_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("stdc2_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
res = trainer.test(test_loader=self.cityscapes_dataset_rescaled75.val_loader,
|
|
res = trainer.test(test_loader=self.cityscapes_dataset_rescaled75.val_loader,
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
test_metrics_list=[IoU(num_classes=20, ignore_index=19)],
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
metrics_progress_verbose=True)[0].cpu().item()
|
|
@@ -697,7 +734,8 @@ class PretrainedModelsTest(unittest.TestCase):
|
|
trainer = SgModel('cityscapes_pretrained_stdc2_seg75_transfer_learning', model_checkpoints_location='local',
|
|
trainer = SgModel('cityscapes_pretrained_stdc2_seg75_transfer_learning', model_checkpoints_location='local',
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
multi_gpu=MultiGPUMode.OFF)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
trainer.connect_dataset_interface(self.transfer_segmentation_dataset, data_loader_num_workers=8)
|
|
- trainer.build_model("stdc2_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"], checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
|
|
|
|
+ trainer.build_model("stdc2_seg75", arch_params=self.cityscapes_pretrained_arch_params["stdc"],
|
|
|
|
+ checkpoint_params=self.cityscapes_pretrained_ckpt_params)
|
|
trainer.train(training_params=self.stdc_transfer_segmentation_train_params)
|
|
trainer.train(training_params=self.stdc_transfer_segmentation_train_params)
|
|
|
|
|
|
def test_transfer_learning_vit_base_imagenet21k(self):
|
|
def test_transfer_learning_vit_base_imagenet21k(self):
|