Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#1001 Bug/sg 861 decouple qat from train from config

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:bug/SG-861_decouple_qat_from_train_from_config
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
  1. # PP-Yolo-E Detection training on COCO2017 Dataset:
  2. # PP-Yolo-E trained in 640x640
  3. # Recipe runs with batch size = 32 X 8 gpus = 256.
  4. # Instructions:
  5. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  6. # 1. Move to the project root (where you will find the ReadMe and src folder)
  7. # 2. Run the command you want:
  8. # ppyoloe_s: python -m super_gradients.train_from_recipe --config-name=coco2017_ppyoloe_s
  9. # ppyoloe_m: python -m super_gradients.train_from_recipe --config-name=coco2017_ppyoloe_m
  10. # ppyoloe_l: python -m super_gradients.train_from_recipe --config-name=coco2017_ppyoloe_l
  11. # ppyoloe_x: python -m super_gradients.train_from_recipe --config-name=coco2017_ppyoloe_x
  12. #
  13. # Training times and accuracies (mAP@0.5-0.95 (COCO API, confidence 0.001, IoU threshold 0.6, test on 640x640 images):
  14. # ppyoloe_s: 37h on 8 NVIDIA GeForce RTX 3090, mAP: 42.52 (val)
  15. # ppyoloe_m: 58h on 8 NVIDIA GeForce RTX 3090, mAP: 47.11 (val)
  16. # ppyoloe_l: 115h on 8 NVIDIA GeForce RTX 3090, mAP: 49.48 (val)
  17. # ppyoloe_x: 240h on 8 NVIDIA GeForce RTX 3090, mAP: 51.15 (val)
  18. #
  19. defaults:
  20. - training_hyperparams: coco2017_ppyoloe_train_params
  21. - dataset_params: coco_detection_ppyoloe_dataset_params
  22. - arch_params: ppyoloe_s_arch_params
  23. - checkpoint_params: default_checkpoint_params
  24. - _self_
  25. - variable_setup
  26. train_dataloader: coco2017_train_ppyoloe
  27. val_dataloader: coco2017_val_ppyoloe
  28. load_checkpoint: False
  29. resume: False
  30. dataset_params:
  31. train_dataloader_params:
  32. batch_size: 32
  33. training_hyperparams:
  34. resume: ${resume}
  35. mixed_precision: True
  36. architecture: pp_yoloe_s
  37. multi_gpu: DDP
  38. num_gpus: 8
  39. experiment_suffix: ""
  40. experiment_name: coco2017_${architecture}${experiment_suffix}
Discard
Tip!

Press p or to see the previous file or, n or to see the next file