Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

#1001 Bug/sg 861 decouple qat from train from config

Merged
Ghost merged 1 commits into Deci-AI:master from deci-ai:bug/SG-861_decouple_qat_from_train_from_config
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  1. # STDC segmentation training example with Cityscapes dataset.
  2. # Reproduction and refinement of paper: Rethinking BiSeNet For Real-time Semantic Segmentation.
  3. #
  4. # Instructions:
  5. # 0. Make sure that the data is stored in dataset_params.dataset_dir or add "dataset_params.data_dir=<PATH-TO-DATASET>" at the end of the command below (feel free to check ReadMe)
  6. # 1. Move to the project root (where you will find the ReadMe and src folder)
  7. # 2. Run the command:
  8. # STDC1-Seg50: python -m super_gradients.train_from_recipe --config-name=cityscapes_stdc_seg50
  9. # STDC2-Seg50: python -m super_gradients.train_from_recipe --config-name=cityscapes_stdc_seg50 architecture=stdc2_seg
  10. # Note: add "checkpoint_params.checkpoint_path=<stdc1-backbone-pretrained-path>" to use pretrained backbone
  11. #
  12. #
  13. #
  14. # Validation mIoU - Cityscapes, training time:
  15. # STDC1-Seg50: input-size: [512, 1024] mIoU: 75.11 2 X RTX A5000, 20 H
  16. # STDC2-Seg50: input-size: [512, 1024] mIoU: 76.44 2 X RTX A5000, 23 H
  17. #
  18. # Official git repo:
  19. # https://github.com/MichaelFan01/STDC-Seg
  20. # Paper:
  21. # https://arxiv.org/abs/2104.13188
  22. #
  23. # Pretrained checkpoints:
  24. # Backbones- downloaded from the author's official repo.
  25. # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc1_imagenet_pretrained.pth
  26. # https://deci-pretrained-models.s3.amazonaws.com/stdc_backbones/stdc2_imagenet_pretrained.pth
  27. #
  28. # Logs, tensorboards and network checkpoints:
  29. # STDC1-Seg50: https://deci-pretrained-models.s3.amazonaws.com/cityscapes_stdc1_seg50_dice_edge/
  30. # STDC2-Seg50: https://deci-pretrained-models.s3.amazonaws.com/cityscapes_stdc2_seg50_dice_edge/
  31. #
  32. # Learning rate and batch size parameters, using 2 RTX A5000 with DDP:
  33. # STDC1-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 16 * 2gpus = 32
  34. # STDC2-Seg50: input-size: [512, 1024] initial_lr: 0.01 batch-size: 16 * 2gpus = 32
  35. #
  36. # Comments:
  37. # * Pretrained backbones were used.
  38. defaults:
  39. - training_hyperparams: cityscapes_default_train_params
  40. - dataset_params: cityscapes_stdc_seg50_dataset_params # TODO: uncomment after DatasetInterface refactor
  41. - checkpoint_params: default_checkpoint_params
  42. - _self_
  43. - variable_setup
  44. train_dataloader: cityscapes_train
  45. val_dataloader: cityscapes_val
  46. architecture: stdc1_seg
  47. arch_params:
  48. num_classes: 19
  49. use_aux_heads: True
  50. checkpoint_params:
  51. checkpoint_path:
  52. load_backbone: True
  53. load_weights_only: True
  54. strict_load: no_key_matching
  55. training_hyperparams:
  56. sync_bn: True
  57. loss:
  58. dice_ce_edge_loss:
  59. num_classes: 19
  60. ignore_index: 19
  61. weights: [ 1., 0.6, 0.4, 1. ]
  62. dice_ce_weights: [ 1., 1. ]
  63. ce_edge_weights: [ .5, .5 ]
  64. edge_kernel: 3
  65. multi_gpu: DDP
  66. num_gpus: 2
  67. experiment_name: ${architecture}50_cityscapes
Discard
Tip!

Press p or to see the previous file or, n or to see the next file