Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

configure.yaml 1.0 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
  1. base:
  2. project: mlops-best-practices
  3. author: Karan Shingde
  4. email: karanshingde@gmail.com
  5. version: 0.0.1
  6. data_source:
  7. type: csv
  8. raw_data_path: raw_data/data.csv
  9. generated_data_path: synthetic_data/synthetic_data.csv
  10. train_data_path: artifacts/train.csv
  11. test_data_path: artifacts/test.csv
  12. data_transformation:
  13. target_column: "Exited"
  14. numerical:
  15. columns: ['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary']
  16. # scaler: StandardScaler(with_mean=False)
  17. # imputer: SimpleImputer(strategy='mean')
  18. categorical:
  19. columns: ['Geography', 'Gender']
  20. # transformer: OneHotEncoder()
  21. # imputer: SimpleImputer(strategy='most_frequent')
  22. # encoder: OneHotEncoder()
  23. # scaler: StandardScaler(with_mean=False)
  24. imbalance_threshold: 60
  25. outliers:
  26. quantile1: 0.25
  27. quantile2: 0.75
  28. test_split: 0.2
  29. random_state: 42
  30. artifacts:
  31. model_path: artifacts/model.pkl
  32. preprocessor_path: artifacts/preprocessor.pkl
  33. params_path: artifacts/params.yaml
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...