1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
- # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from argparse import ArgumentParser
- import torch
- from pytorch_lightning.trainer.trainer import Trainer
- from torch.utils.data import DataLoader
- from nemo_chem.models.megamolbart import MegaMolBARTModel
- from nemo.collections.nlp.modules.common.megatron.megatron_init import fake_initialize_model_parallel
- from nemo.collections.nlp.parts.nlp_overrides import NLPDDPPlugin, NLPSaveRestoreConnector
- from nemo.utils.app_state import AppState
- assert torch.cuda.is_available()
- from torch.utils.data.dataset import Dataset
- from typing import Dict
- class MoleculeRequestDataset(Dataset):
- def __init__(self, request: Dict, tokenizer) -> None:
- super().__init__()
- self.request = request
- self.tokenizer = tokenizer
- # tokenize prompt
- self.request['tokenized_prompt'] = ' '.join(self.tokenizer.text_to_tokens(request['prompt']))
- tokens = self.tokenizer.text_to_ids(request['prompt'])
- self.request['tokens'] = torch.tensor(tokens)
- self.mask_prompt(self.request['prompt'])
- def mask_prompt(self, sample):
- sample = torch.LongTensor(self.tokenizer.text_to_ids(sample))
- self.request['masked_sample'] = sample
- def __len__(self):
- return 1
- def __getitem__(self, index):
- return self.request
- def main():
- parser = ArgumentParser()
- parser.add_argument("--model_file", type=str, required=True, help="Pass path to model's .nemo file")
- parser.add_argument(
- "--prompt", type=str, default="N[C@H]1CCC(=O)[C@H](O)[C@H](O)[C@H]1O", required=False, help="Prompt for the model (a text to complete)"
- )
- parser.add_argument(
- "--tokens_to_generate", type=int, default="100", required=False, help="How many tokens to add to prompt"
- )
- parser.add_argument(
- "--tensor_model_parallel_size", type=int, default=1, required=False,
- )
- parser.add_argument(
- "--pipeline_model_parallel_size", type=int, default=1, required=False,
- )
- parser.add_argument(
- "--pipeline_model_parallel_split_rank", type=int, default=0, required=False,
- )
- parser.add_argument("--precision", default="16", type=str, help="PyTorch Lightning Trainer precision flag")
- args = parser.parse_args()
- # cast precision to int if 32 or 16
- if args.precision in ["32", "16"]:
- args.precision = int(float(args.precision))
- # trainer required for restoring model parallel models
- trainer = Trainer(
- plugins=NLPDDPPlugin(),
- devices=args.tensor_model_parallel_size * args.pipeline_model_parallel_size,
- accelerator='gpu',
- precision=args.precision,
- )
- app_state = AppState()
- if args.tensor_model_parallel_size > 1 or args.pipeline_model_parallel_size > 1:
- app_state.model_parallel_size = args.tensor_model_parallel_size * args.pipeline_model_parallel_size
- (
- app_state.tensor_model_parallel_rank,
- app_state.pipeline_model_parallel_rank,
- app_state.model_parallel_size,
- app_state.data_parallel_size,
- app_state.pipeline_model_parallel_split_rank,
- ) = fake_initialize_model_parallel(
- world_size=app_state.model_parallel_size,
- rank=trainer.global_rank,
- tensor_model_parallel_size_=args.tensor_model_parallel_size,
- pipeline_model_parallel_size_=args.pipeline_model_parallel_size,
- pipeline_model_parallel_split_rank_=args.pipeline_model_parallel_split_rank,
- )
- model = MegaMolBARTModel.restore_from(
- restore_path=args.model_file, trainer=trainer, save_restore_connector=NLPSaveRestoreConnector(),
- )
- model.freeze()
- request = {
- "prompt": args.prompt,
- "tokens_to_generate": args.tokens_to_generate,
- }
- dataset = MoleculeRequestDataset(request, model.tokenizer)
- request_dl = DataLoader(dataset)
- response = trainer.predict(model, request_dl)[0]
- input_mol = response['prompt']
- recon_mol = ''.join(response['completion']['text'])
- print("***************************")
- print(f"Reconstruction: {'PASS' if input_mol == recon_mol else 'FAIL'}")
- print(f"input molecule: {input_mol}")
- print(f"reconstructed molecule: {recon_mol}")
- print("***************************")
- if __name__ == '__main__':
- main() # noqa pylint: disable=no-value-for-parameter
|