Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

megamolbart_eval.py 4.9 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
  1. # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. from argparse import ArgumentParser
  15. import torch
  16. from pytorch_lightning.trainer.trainer import Trainer
  17. from torch.utils.data import DataLoader
  18. from nemo_chem.models.megamolbart import MegaMolBARTModel
  19. from nemo.collections.nlp.modules.common.megatron.megatron_init import fake_initialize_model_parallel
  20. from nemo.collections.nlp.parts.nlp_overrides import NLPDDPPlugin, NLPSaveRestoreConnector
  21. from nemo.utils.app_state import AppState
  22. assert torch.cuda.is_available()
  23. from torch.utils.data.dataset import Dataset
  24. from typing import Dict
  25. class MoleculeRequestDataset(Dataset):
  26. def __init__(self, request: Dict, tokenizer) -> None:
  27. super().__init__()
  28. self.request = request
  29. self.tokenizer = tokenizer
  30. # tokenize prompt
  31. self.request['tokenized_prompt'] = ' '.join(self.tokenizer.text_to_tokens(request['prompt']))
  32. tokens = self.tokenizer.text_to_ids(request['prompt'])
  33. self.request['tokens'] = torch.tensor(tokens)
  34. self.mask_prompt(self.request['prompt'])
  35. def mask_prompt(self, sample):
  36. sample = torch.LongTensor(self.tokenizer.text_to_ids(sample))
  37. self.request['masked_sample'] = sample
  38. def __len__(self):
  39. return 1
  40. def __getitem__(self, index):
  41. return self.request
  42. def main():
  43. parser = ArgumentParser()
  44. parser.add_argument("--model_file", type=str, required=True, help="Pass path to model's .nemo file")
  45. parser.add_argument(
  46. "--prompt", type=str, default="N[C@H]1CCC(=O)[C@H](O)[C@H](O)[C@H]1O", required=False, help="Prompt for the model (a text to complete)"
  47. )
  48. parser.add_argument(
  49. "--tokens_to_generate", type=int, default="100", required=False, help="How many tokens to add to prompt"
  50. )
  51. parser.add_argument(
  52. "--tensor_model_parallel_size", type=int, default=1, required=False,
  53. )
  54. parser.add_argument(
  55. "--pipeline_model_parallel_size", type=int, default=1, required=False,
  56. )
  57. parser.add_argument(
  58. "--pipeline_model_parallel_split_rank", type=int, default=0, required=False,
  59. )
  60. parser.add_argument("--precision", default="16", type=str, help="PyTorch Lightning Trainer precision flag")
  61. args = parser.parse_args()
  62. # cast precision to int if 32 or 16
  63. if args.precision in ["32", "16"]:
  64. args.precision = int(float(args.precision))
  65. # trainer required for restoring model parallel models
  66. trainer = Trainer(
  67. plugins=NLPDDPPlugin(),
  68. devices=args.tensor_model_parallel_size * args.pipeline_model_parallel_size,
  69. accelerator='gpu',
  70. precision=args.precision,
  71. )
  72. app_state = AppState()
  73. if args.tensor_model_parallel_size > 1 or args.pipeline_model_parallel_size > 1:
  74. app_state.model_parallel_size = args.tensor_model_parallel_size * args.pipeline_model_parallel_size
  75. (
  76. app_state.tensor_model_parallel_rank,
  77. app_state.pipeline_model_parallel_rank,
  78. app_state.model_parallel_size,
  79. app_state.data_parallel_size,
  80. app_state.pipeline_model_parallel_split_rank,
  81. ) = fake_initialize_model_parallel(
  82. world_size=app_state.model_parallel_size,
  83. rank=trainer.global_rank,
  84. tensor_model_parallel_size_=args.tensor_model_parallel_size,
  85. pipeline_model_parallel_size_=args.pipeline_model_parallel_size,
  86. pipeline_model_parallel_split_rank_=args.pipeline_model_parallel_split_rank,
  87. )
  88. model = MegaMolBARTModel.restore_from(
  89. restore_path=args.model_file, trainer=trainer, save_restore_connector=NLPSaveRestoreConnector(),
  90. )
  91. model.freeze()
  92. request = {
  93. "prompt": args.prompt,
  94. "tokens_to_generate": args.tokens_to_generate,
  95. }
  96. dataset = MoleculeRequestDataset(request, model.tokenizer)
  97. request_dl = DataLoader(dataset)
  98. response = trainer.predict(model, request_dl)[0]
  99. input_mol = response['prompt']
  100. recon_mol = ''.join(response['completion']['text'])
  101. print("***************************")
  102. print(f"Reconstruction: {'PASS' if input_mol == recon_mol else 'FAIL'}")
  103. print(f"input molecule: {input_mol}")
  104. print(f"reconstructed molecule: {recon_mol}")
  105. print("***************************")
  106. if __name__ == '__main__':
  107. main() # noqa pylint: disable=no-value-for-parameter
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...