1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
- # Copyright (c) 2022, NVIDIA CORPORATION.
- # SPDX-License-Identifier: Apache-2.0
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import torch
- from nemo.utils import logging
- from rdkit import Chem
- import math
- from pysmilesutils.augment import SMILESAugmenter
- from typing import List
- import numpy as np
- import math
- import random
- from nemo.collections.common.tokenizers.char_tokenizer import TokenizerSpec
- __all__ = ['MoleculeEnumeration']
- # FIXME: apply masking on ids instead of tokens
- class MoleculeEnumeration(object):
- def __init__(self, tokenizer: TokenizerSpec, seq_length: int,
- encoder_augment: bool, encoder_mask: bool,
- decoder_augment: bool, decoder_mask: bool,
- canonicalize_input: bool, pad_size_divisible_by_8: bool,
- mask_scheme: str, mask_prob: float, span_lambda: float,
- **kwargs):
- self.tokenizer = tokenizer
- self.seq_length = seq_length
- self.encoder_augment = encoder_augment
- self.encoder_mask = encoder_mask
- self.decoder_augment = decoder_augment
- self.decoder_mask = decoder_mask
- self.canonicalize_input = canonicalize_input
- self.pad_size_divisible_by_8 = pad_size_divisible_by_8 # workaround for CUDA alignment bug
- self.mask_scheme = mask_scheme
- self.mask_prob = mask_prob
- self.span_lambda = span_lambda
- # self.aug = CanonicalSMILESAugmenter().randomize_mol_restricted
- def _smiles_augmeter_func(self, smiles: str, augment_data: bool, canonicalize_input: bool):
- """Regularize SMILES by coverting to RDKit mol objects and back
- Args:
- smiles (str): Input SMILES from dataset
- canonicalize_input (bool, optional): Canonicalize by default. Defaults to False.
- smiles_augmenter: Function to augment/randomize SMILES. Defaults to None
- """
- mol = Chem.MolFromSmiles(smiles)
- canon_smiles = Chem.MolToSmiles(mol, canonical=True) if canonicalize_input else smiles
- if augment_data:
- # aug_mol = self.aug(mol)
- atom_order = list(range(mol.GetNumAtoms()))
- np.random.shuffle(atom_order)
- aug_mol = Chem.RenumberAtoms(mol, atom_order) # TODO how to use PySMILESutils for this
- # There is a very rare possibility that RDKit will not be able to generate
- # the SMILES for the augmented mol. In this case we just use the canonical
- # mol to generate the SMILES
- try:
- aug_smiles = Chem.MolToSmiles(aug_mol, canonical=False)
- except RuntimeError:
- logging.info(f'Could not generate smiles for {smiles} after augmenting. Forcing canonicalization')
- aug_smiles = canon_smiles if canonicalize_input else Chem.MolToSmiles(mol, canonical=True)
- else:
- aug_smiles = Chem.MolToSmiles(mol, canonical=False)
- assert len(aug_smiles) > 0, AssertionError('Augmented SMILES string is empty')
- assert len(canon_smiles) > 0, AssertionError('Canonical SMILES string is empty')
- return aug_smiles, canon_smiles
- def _check_seq_len(self, tokens: List[List[str]], mask: List[List[int]]):
- """ Warn user and shorten sequence if the tokens are too long, otherwise return original
- Args:
- tokens (List[List[str]]): List of token sequences
- mask (List[List[int]]): List of mask sequences
- Returns:
- tokens (List[List[str]]): List of token sequences (shortened, if necessary)
- mask (List[List[int]]): List of mask sequences (shortened, if necessary)
- """
- seq_len = max([len(ts) for ts in tokens])
- if seq_len > self.seq_length:
- tokens_short = [ts[:self.seq_length] for ts in tokens]
- mask_short = [ms[:self.seq_length] for ms in mask]
- return (tokens_short, mask_short)
- return (tokens, mask)
- def _prepare_tokens(self, batch: List[str], mask_data: bool = False):
- """Prepare tokens for encoder or decoder from batch of input SMILES strings
- Args:
- batch (List[str]): Batch of input SMILES strings
- augment_data (bool): Augment SMILES
- mask_data (bool, optional): Mask decoder tokens. Defaults to False.
- Returns:
- dict: token output
- """
- # Tokenize with optional masking, padding is done later due to differences in encoder/decoder bos/eos tokens
- token_output = self.tokenize(batch, mask=mask_data)
- if mask_data:
- tokens = token_output['masked_tokens']
- mask = token_output['token_masks']
- else:
- tokens = token_output['original_tokens']
- mask = [[True] * len(ts) for ts in tokens] # 1/True = Active, 0/False = Inactive
- # Verify sequence length
- tokens, mask = self._check_seq_len(tokens, mask)
- token_output = {
- "tokens": tokens,
- "mask": mask
- }
- return token_output
- def _pad_seqs(self, seqs, pad_token):
- # TODO: switch to torch.nn.utils.rnn.pad_sequence
- pad_length = max([len(seq) for seq in seqs])
- if self.pad_size_divisible_by_8:
- pad_length = int(math.ceil(pad_length/8) * 8)
- padded = [seq + ([pad_token] * (pad_length - len(seq))) for seq in seqs]
- masks = [([1] * len(seq)) + ([0] * (pad_length - len(seq))) for seq in seqs] # 1/True = Active, 0/False = Inactive
- return padded, masks
- def collate_fn(self, batch: List[str], label_pad: int = -1):
- """Collate function for NeMo MegaMolBART. Format of data has been altered for NeMo per 'NB' comments.
- This code should be cleaned up and validated once new tokenizer from NeMo is incorporated."""
- # Dimensions required by NeMo: [batch, sequence + padding]
- # Encoder
- encoder_smiles_list = [self._smiles_augmeter_func(smiles, augment_data=self.encoder_augment, canonicalize_input=self.canonicalize_input)
- for smiles in batch]
- encoder_smiles = [x[0] for x in encoder_smiles_list]
- canon_targets = [x[1] for x in encoder_smiles_list]
- encoder_dict = self._prepare_tokens(encoder_smiles, mask_data=self.encoder_mask)
- encoder_tokens = encoder_dict['tokens'] # TODO boolean masks are never used from this function -- remove
- enc_token_ids = [self.tokenizer.token_to_ids(t) for t in encoder_tokens]
- enc_token_ids, encoder_mask = self._pad_seqs(enc_token_ids, self.tokenizer.pad_id)
- enc_token_ids = torch.tensor(enc_token_ids, dtype=torch.int64)
- encoder_mask = torch.tensor(encoder_mask, dtype=torch.int64)
- # Decoder
- if self.decoder_augment:
- decoder_smiles_list = [self._smiles_augmeter_func(smiles, augment_data=self.decoder_augment, canonicalize_input=False)
- for smiles in encoder_smiles]
- decoder_smiles = [x[0] for x in decoder_smiles_list]
- else:
- decoder_smiles = encoder_smiles
- decoder_dict = self._prepare_tokens(decoder_smiles, mask_data=self.decoder_mask)
- decoder_tokens = decoder_dict['tokens']
- dec_token_ids = [self.tokenizer.token_to_ids(t) for t in decoder_tokens]
- label_ids = [sample + [self.tokenizer.eos_id] for sample in dec_token_ids] # assign label_ids before adding bos_id to decoder
- dec_token_ids = [[self.tokenizer.bos_id] + sample for sample in dec_token_ids]
- dec_token_ids, decoder_mask = self._pad_seqs(dec_token_ids, self.tokenizer.pad_id)
- dec_token_ids = torch.tensor(dec_token_ids, dtype=torch.int64)
- decoder_mask = torch.tensor(decoder_mask, dtype=torch.int64)
- label_token_ids, loss_mask = self._pad_seqs(label_ids, self.tokenizer.pad_id)
- label_token_ids = torch.tensor(label_token_ids, dtype=torch.int64)
- loss_mask = torch.tensor(loss_mask, dtype=torch.int64)
- label_token_ids[~loss_mask.to(torch.bool)] = label_pad
- collate_output = {'text_enc': enc_token_ids,
- 'enc_mask': encoder_mask,
- 'text_dec': dec_token_ids,
- 'dec_mask': decoder_mask,
- 'labels': label_token_ids,
- 'loss_mask': loss_mask,
- 'target_smiles': canon_targets} # smiles strings
- return collate_output
- def tokenize(self, sents1, mask=False):
- # TODO this function needs cleanup
- tokens = [self.tokenizer.text_to_tokens(s) for s in sents1]
- m_tokens, token_masks = self.mask_tokens(tokens, empty_mask=not mask)
- output = {}
- output["original_tokens"] = tokens
- if mask:
- output["masked_tokens"] = m_tokens
- output["token_masks"] = token_masks
- return output
- def mask_tokens(self, tokens, empty_mask=False):
- if empty_mask:
- mask = [[True] * len(ts) for ts in tokens]
- return tokens, mask
- masked_tokens = []
- token_masks = []
- for ts in tokens:
- # FIXME: add config
- # if self.mask_scheme == "replace":
- # masked, token_mask = self._mask_replace(ts)
- # elif self.mask_scheme == "span":
- masked, token_mask = self._mask_span(ts)
- # else:
- # raise ValueError(f"Unrecognised mask scheme: {self.mask_scheme}")
- masked_tokens.append(masked)
- token_masks.append(token_mask)
- return masked_tokens, token_masks
- def _mask_replace(self, ts):
- mask_bools = [True, False]
- weights = [self.mask_prob, 1 - self.mask_prob]
- token_mask = random.choices(mask_bools, weights=weights, k=len(ts))
- masked = [self._mask_token(ts[i]) if m else ts[i] for i, m in enumerate(token_mask)]
- return masked, token_mask
- def _mask_span(self, ts):
- curr_token = 0
- masked = []
- token_mask = []
- mask_bools = [True, False]
- weights = [self.mask_prob, 1 - self.mask_prob]
- sampled_mask = random.choices(mask_bools, weights=weights, k=len(ts))
- while curr_token < len(ts):
- # If mask, sample from a poisson dist to get length of mask
- if sampled_mask[curr_token]:
- mask_len = torch.poisson(torch.tensor(self.span_lambda)).long().item()
- masked.append(self.tokenizer.mask_token)
- token_mask.append(True)
- curr_token += mask_len
- # Otherwise don't mask
- else:
- masked.append(ts[curr_token])
- token_mask.append(False)
- curr_token += 1
- return masked, token_mask
- def _mask_token(self, token):
- # FIXME: not working
- rand = random.random()
- if rand < self.show_mask_token_prob:
- return self.tokenizer.mask_token
- elif rand < self.show_mask_token_prob + ((1 - self.show_mask_token_prob) / 2):
- token_idx = random.choice(self.chem_token_idxs)
- return self.decode_vocab[token_idx]
- else:
- return token
|