Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

test_pre_train_model.py 5.9 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  1. import random
  2. import pytest
  3. import torch
  4. from molbart.models.transformer_models import BARTModel
  5. from molbart.data.util import BatchEncoder
  6. from molbart.utils.samplers.beam_search_samplers import DecodeSampler
  7. from molbart.utils.tokenizers import ChemformerTokenizer, ReplaceTokensMasker
  8. regex = r"\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9]"
  9. # Use dummy SMILES strings
  10. react_data = ["CCO.C", "CCCl", "C(=O)CBr"]
  11. # Use dummy SMILES strings
  12. prod_data = ["cc", "CCl", "CBr"]
  13. model_args = {
  14. "d_model": 5,
  15. "num_layers": 2,
  16. "num_heads": 1,
  17. "d_feedforward": 32,
  18. "lr": 0.0001,
  19. "weight_decay": 0.0,
  20. "activation": "gelu",
  21. "num_steps": 1000,
  22. "max_seq_len": 40,
  23. }
  24. random.seed(a=1)
  25. torch.manual_seed(1)
  26. @pytest.fixture
  27. def setup_encoder():
  28. tokeniser = ChemformerTokenizer(smiles=react_data + prod_data, regex_token_patterns=regex.split("."))
  29. masker = ReplaceTokensMasker(tokeniser)
  30. encoder = BatchEncoder(tokeniser, masker=masker, max_seq_len=model_args["max_seq_len"])
  31. return tokeniser, masker, encoder
  32. def test_pos_emb_shape(setup_encoder):
  33. tokeniser, _, _ = setup_encoder
  34. pad_token_idx = tokeniser["pad"]
  35. sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
  36. model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
  37. pos_embs = model._positional_embs()
  38. assert pos_embs.shape[0] == model_args["max_seq_len"]
  39. assert pos_embs.shape[1] == model.d_model
  40. def test_construct_input_shape(setup_encoder):
  41. tokeniser, _, encoder = setup_encoder
  42. pad_token_idx = tokeniser["pad"]
  43. sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
  44. model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
  45. token_ids, mask = encoder(react_data)
  46. emb = model._construct_input(token_ids, mask)
  47. assert emb.shape[0] == max([len(ts) for ts in token_ids.transpose(0, 1)])
  48. assert emb.shape[1] == 3
  49. assert emb.shape[2] == model_args["d_model"]
  50. def test_bart_forward_shape(setup_encoder):
  51. tokeniser, _, encoder = setup_encoder
  52. pad_token_idx = tokeniser["pad"]
  53. sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
  54. model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
  55. react_ids, react_mask = encoder(react_data, mask=True)
  56. prod_ids, prod_mask = encoder(prod_data, mask=True)
  57. batch_input = {
  58. "encoder_input": react_ids,
  59. "encoder_pad_mask": react_mask,
  60. "decoder_input": prod_ids,
  61. "decoder_pad_mask": prod_mask,
  62. }
  63. output = model(batch_input)
  64. model_output = output["model_output"]
  65. token_output = output["token_output"]
  66. exp_seq_len = 4 # From expected tokenised length of prod data
  67. exp_batch_size = len(prod_data)
  68. exp_dim = model_args["d_model"]
  69. exp_vocab_size = len(tokeniser)
  70. assert tuple(model_output.shape) == (exp_seq_len, exp_batch_size, exp_dim)
  71. assert tuple(token_output.shape) == (exp_seq_len, exp_batch_size, exp_vocab_size)
  72. def test_bart_encode_shape(setup_encoder):
  73. tokeniser, _, encoder = setup_encoder
  74. pad_token_idx = tokeniser["pad"]
  75. sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
  76. model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
  77. react_ids, react_mask = encoder(react_data)
  78. batch_input = {"encoder_input": react_ids, "encoder_pad_mask": react_mask}
  79. output = model.encode(batch_input)
  80. exp_seq_len = 9 # From expected tokenised length of react data
  81. exp_batch_size = len(react_data)
  82. exp_dim = model_args["d_model"]
  83. assert tuple(output.shape) == (exp_seq_len, exp_batch_size, exp_dim)
  84. def test_bart_decode_shape(setup_encoder):
  85. tokeniser, _, encoder = setup_encoder
  86. pad_token_idx = tokeniser["pad"]
  87. sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
  88. model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
  89. react_ids, react_mask = encoder(react_data)
  90. encode_input = {"encoder_input": react_ids, "encoder_pad_mask": react_mask}
  91. memory = model.encode(encode_input)
  92. prod_ids, prod_mask = encoder(prod_data)
  93. batch_input = {
  94. "decoder_input": prod_ids,
  95. "decoder_pad_mask": prod_mask,
  96. "memory_input": memory,
  97. "memory_pad_mask": react_mask,
  98. }
  99. output = model.decode(batch_input)
  100. exp_seq_len = 4 # From expected tokenised length of prod data
  101. exp_batch_size = len(react_data)
  102. exp_vocab_size = len(tokeniser)
  103. assert tuple(output.shape) == (exp_seq_len, exp_batch_size, exp_vocab_size)
  104. def test_calc_token_acc(setup_encoder):
  105. tokeniser, _, encoder = setup_encoder
  106. pad_token_idx = tokeniser["pad"]
  107. sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
  108. model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
  109. react_ids, react_mask = encoder(react_data[1:])
  110. target_ids = react_ids[1:, :]
  111. target_mask = react_mask[1:, :]
  112. # 9 is expected seq len of react data when padded
  113. token_output = torch.rand([8, len(react_data[1:]), len(tokeniser)])
  114. """
  115. Expected outputs
  116. CCCl
  117. C(=O)CBr
  118. Vocab:
  119. 0 <PAD>
  120. 3 &
  121. 6 C
  122. 7 O
  123. 8 .
  124. 9 Cl
  125. 10 (
  126. 11 =
  127. 12 )
  128. 13 Br
  129. """
  130. # Batch element 0
  131. token_output[0, 0, 6] += 1
  132. token_output[1, 0, 6] -= 1
  133. token_output[2, 0, 9] += 1
  134. token_output[3, 0, 3] += 1
  135. token_output[4, 0, 0] += 1
  136. token_output[5, 0, 0] -= 1
  137. # Batch element 1
  138. token_output[0, 1, 6] += 1
  139. token_output[1, 1, 10] += 1
  140. token_output[2, 1, 11] += 1
  141. token_output[3, 1, 7] += 1
  142. token_output[4, 1, 12] -= 1
  143. token_output[5, 1, 6] += 1
  144. token_output[6, 1, 13] -= 1
  145. token_output[7, 1, 3] += 1
  146. batch_input = {"target": target_ids, "target_mask": target_mask}
  147. model_output = {"token_output": token_output}
  148. token_acc = model._calc_token_acc(batch_input, model_output)
  149. exp_token_acc = (3 + 6) / (4 + 8)
  150. assert exp_token_acc == token_acc
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...