1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
- import random
- import pytest
- import torch
- from molbart.models.transformer_models import BARTModel
- from molbart.modules.data.util import BatchEncoder
- from molbart.modules.decoder import DecodeSampler
- from molbart.modules.tokenizer import ChemformerTokenizer, ReplaceTokensMasker
- regex = r"\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9]"
- # Use dummy SMILES strings
- react_data = ["CCO.C", "CCCl", "C(=O)CBr"]
- # Use dummy SMILES strings
- prod_data = ["cc", "CCl", "CBr"]
- model_args = {
- "d_model": 5,
- "num_layers": 2,
- "num_heads": 1,
- "d_feedforward": 32,
- "lr": 0.0001,
- "weight_decay": 0.0,
- "activation": "gelu",
- "num_steps": 1000,
- "max_seq_len": 40,
- }
- random.seed(a=1)
- torch.manual_seed(1)
- @pytest.fixture
- def setup_encoder():
- tokeniser = ChemformerTokenizer(
- smiles=react_data + prod_data, regex_token_patterns=regex.split(".")
- )
- masker = ReplaceTokensMasker(tokeniser)
- encoder = BatchEncoder(
- tokeniser, masker=masker, max_seq_len=model_args["max_seq_len"]
- )
- return tokeniser, masker, encoder
- def test_pos_emb_shape(setup_encoder):
- tokeniser, _, _ = setup_encoder
- pad_token_idx = tokeniser["pad"]
- sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
- model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
- pos_embs = model._positional_embs()
- assert pos_embs.shape[0] == model_args["max_seq_len"]
- assert pos_embs.shape[1] == model.d_model
- def test_construct_input_shape(setup_encoder):
- tokeniser, _, encoder = setup_encoder
- pad_token_idx = tokeniser["pad"]
- sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
- model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
- token_ids, mask = encoder(react_data)
- emb = model._construct_input(token_ids, mask)
- assert emb.shape[0] == max([len(ts) for ts in token_ids.transpose(0, 1)])
- assert emb.shape[1] == 3
- assert emb.shape[2] == model_args["d_model"]
- def test_bart_forward_shape(setup_encoder):
- tokeniser, _, encoder = setup_encoder
- pad_token_idx = tokeniser["pad"]
- sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
- model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
- react_ids, react_mask = encoder(react_data, mask=True)
- prod_ids, prod_mask = encoder(prod_data, mask=True)
- batch_input = {
- "encoder_input": react_ids,
- "encoder_pad_mask": react_mask,
- "decoder_input": prod_ids,
- "decoder_pad_mask": prod_mask,
- }
- output = model(batch_input)
- model_output = output["model_output"]
- token_output = output["token_output"]
- exp_seq_len = 4 # From expected tokenised length of prod data
- exp_batch_size = len(prod_data)
- exp_dim = model_args["d_model"]
- exp_vocab_size = len(tokeniser)
- assert tuple(model_output.shape) == (exp_seq_len, exp_batch_size, exp_dim)
- assert tuple(token_output.shape) == (exp_seq_len, exp_batch_size, exp_vocab_size)
- def test_bart_encode_shape(setup_encoder):
- tokeniser, _, encoder = setup_encoder
- pad_token_idx = tokeniser["pad"]
- sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
- model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
- react_ids, react_mask = encoder(react_data)
- batch_input = {"encoder_input": react_ids, "encoder_pad_mask": react_mask}
- output = model.encode(batch_input)
- exp_seq_len = 9 # From expected tokenised length of react data
- exp_batch_size = len(react_data)
- exp_dim = model_args["d_model"]
- assert tuple(output.shape) == (exp_seq_len, exp_batch_size, exp_dim)
- def test_bart_decode_shape(setup_encoder):
- tokeniser, _, encoder = setup_encoder
- pad_token_idx = tokeniser["pad"]
- sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
- model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
- react_ids, react_mask = encoder(react_data)
- encode_input = {"encoder_input": react_ids, "encoder_pad_mask": react_mask}
- memory = model.encode(encode_input)
- prod_ids, prod_mask = encoder(prod_data)
- batch_input = {
- "decoder_input": prod_ids,
- "decoder_pad_mask": prod_mask,
- "memory_input": memory,
- "memory_pad_mask": react_mask,
- }
- output = model.decode(batch_input)
- exp_seq_len = 4 # From expected tokenised length of prod data
- exp_batch_size = len(react_data)
- exp_vocab_size = len(tokeniser)
- assert tuple(output.shape) == (exp_seq_len, exp_batch_size, exp_vocab_size)
- def test_calc_token_acc(setup_encoder):
- tokeniser, _, encoder = setup_encoder
- pad_token_idx = tokeniser["pad"]
- sampler = DecodeSampler(tokeniser, model_args["max_seq_len"])
- model = BARTModel(sampler, pad_token_idx, len(tokeniser), **model_args)
- react_ids, react_mask = encoder(react_data[1:])
- target_ids = react_ids[1:, :]
- target_mask = react_mask[1:, :]
- # 9 is expected seq len of react data when padded
- token_output = torch.rand([8, len(react_data[1:]), len(tokeniser)])
- """
- Expected outputs
- CCCl
- C(=O)CBr
- Vocab:
- 0 <PAD>
- 3 &
- 6 C
- 7 O
- 8 .
- 9 Cl
- 10 (
- 11 =
- 12 )
- 13 Br
- """
- # Batch element 0
- token_output[0, 0, 6] += 1
- token_output[1, 0, 6] -= 1
- token_output[2, 0, 9] += 1
- token_output[3, 0, 3] += 1
- token_output[4, 0, 0] += 1
- token_output[5, 0, 0] -= 1
- # Batch element 1
- token_output[0, 1, 6] += 1
- token_output[1, 1, 10] += 1
- token_output[2, 1, 11] += 1
- token_output[3, 1, 7] += 1
- token_output[4, 1, 12] -= 1
- token_output[5, 1, 6] += 1
- token_output[6, 1, 13] -= 1
- token_output[7, 1, 3] += 1
- batch_input = {"target": target_ids, "target_mask": target_mask}
- model_output = {"token_output": token_output}
- token_acc = model._calc_token_acc(batch_input, model_output)
- exp_token_acc = (3 + 6) / (4 + 8)
- assert exp_token_acc == token_acc
|