1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
- from __future__ import annotations
- import os
- from typing import Any, Dict, Optional
- from typing import TYPE_CHECKING
- import pandas as pd
- import pytorch_lightning as pl
- import pytorch_lightning.callbacks as plc
- import torch
- from pytorch_lightning.callbacks import Callback
- if TYPE_CHECKING:
- from molbart.models import _AbsTransformerModel
- class LearningRateMonitor(plc.LearningRateMonitor):
- callback_name = "LearningRateMonitor"
- def __init__(self, logging_interval: str = "step", log_momentum: bool = False, **kwargs: Any) -> None:
- super().__init__(logging_interval=logging_interval, log_momentum=log_momentum, **kwargs)
- def __repr__(self):
- return self.callback_name
- class ModelCheckpoint(plc.ModelCheckpoint):
- callback_name = "ModelCheckpoint"
- def __init__(
- self,
- dirpath: Optional[str] = None,
- filename: Optional[str] = None,
- monitor: str = "validation_loss",
- verbose: bool = False,
- save_last: bool = True,
- save_top_k: int = 3,
- save_weights_only: bool = False,
- mode: str = "auto",
- period: int = 1,
- prefix: str = "",
- **kwargs: Any,
- ) -> None:
- super().__init__(
- dirpath=dirpath,
- filename=filename,
- monitor=monitor,
- verbose=verbose,
- save_last=save_last,
- save_top_k=save_top_k,
- save_weights_only=save_weights_only,
- mode=mode,
- period=period,
- prefix=prefix,
- **kwargs,
- )
- def __repr__(self):
- return self.callback_name
- class StepCheckpoint(Callback):
- callback_name = "StepCheckpoint"
- def __init__(self, step_interval: int = 50000) -> None:
- super().__init__()
- if not isinstance(step_interval, int):
- raise TypeError(f"step_interval must be of type int, got type {type(step_interval)}")
- self.step_interval = step_interval
- def __repr__(self):
- return self.callback_name
- # def on_batch_end(self, trainer, model):
- # Ideally this should on_after_optimizer_step, but that isn't available in pytorch lightning (yet?)
- def on_after_backward(self, trainer: pl.Trainer, model: _AbsTransformerModel) -> None:
- step = trainer.global_step
- if (step != 0) and (step % self.step_interval == 0):
- # if (step % self.step_interval == 0):
- self._save_model(trainer, model, step)
- def _save_model(self, trainer: pl.Trainer, model: _AbsTransformerModel, step: int) -> None:
- if trainer.logger is not None:
- if trainer.weights_save_path != trainer.default_root_dir:
- save_dir = trainer.weights_save_path
- else:
- save_dir = trainer.logger.save_dir or trainer.default_root_dir
- version = (
- trainer.logger.version
- if isinstance(trainer.logger.version, str)
- else f"version_{trainer.logger.version}"
- )
- version, name = trainer.training_type_plugin.broadcast((version, trainer.logger.name))
- ckpt_path = os.path.join(save_dir, str(name), version, "checkpoints")
- else:
- ckpt_path = os.path.join(trainer.weights_save_path, "checkpoints")
- save_path = f"{ckpt_path}/step={str(step)}.ckpt"
- print(f"Saving step checkpoint in {save_path}")
- trainer.save_checkpoint(save_path)
- class OptLRMonitor(Callback):
- callback_name = "OptLRMonitor"
- def __init__(self) -> None:
- super().__init__()
- def __repr__(self):
- return self.callback_name
- def on_train_batch_start(self, trainer: pl.Trainer, *args: Any, **kwargs: Any) -> None:
- # Only support one optimizer
- opt = trainer.optimizers[0]
- # Only support one param group
- stats = {"lr-Adam": opt.param_groups[0]["lr"]}
- trainer.logger.log_metrics(stats, step=trainer.global_step)
- class ValidationScoreCallback(Callback):
- """
- Retrieving scores from the validation epochs and write to file continuously.
- """
- callback_name = "ValidationScoreCallback"
- def __init__(self) -> None:
- super().__init__()
- self._metrics = pd.DataFrame()
- self._skip_logging = True
- def __repr__(self):
- return self.callback_name
- def on_validation_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None:
- if self._skip_logging:
- self._skip_logging = False
- return
- logged_metrics = {
- key: [val.to(torch.device("cpu")).numpy()]
- for key, val in trainer.callback_metrics.items()
- if key != "mol_acc"
- }
- metrics = {"epoch": pl_module.current_epoch}
- metrics.update(logged_metrics)
- metrics_df = pd.DataFrame(metrics)
- self._metrics = pd.concat([self._metrics, metrics_df], axis=0, ignore_index=True)
- self.out_directory = self._get_out_directory(trainer)
- self._save_logged_data()
- return
- def _get_out_directory(self, trainer: pl.Trainer) -> str:
- if trainer.logger is not None:
- if trainer.weights_save_path != trainer.default_root_dir:
- save_dir = trainer.weights_save_path
- else:
- save_dir = trainer.logger.save_dir or trainer.default_root_dir
- version = (
- trainer.logger.version
- if isinstance(trainer.logger.version, str)
- else f"version_{trainer.logger.version}"
- )
- version, name = trainer.training_type_plugin.broadcast((version, trainer.logger.name))
- data_path = os.path.join(save_dir, str(name), version)
- else:
- data_path = trainer.weights_save_path
- return data_path
- def _save_logged_data(self) -> None:
- """
- Retrieve and write data (model validation) logged during training.
- """
- outfile = self.out_directory + "/logged_train_metrics.csv"
- self._metrics.to_csv(outfile, sep="\t", index=False)
- print("Logged training/validation set loss written to: " + outfile)
- return
- class ScoreCallback(Callback):
- """
- Retrieving scores from test step and write to file continuously.
- """
- callback_name = "ScoreCallback"
- def __init__(
- self,
- output_scores: str = "metrics_scores.csv",
- output_sampled_smiles: str = "sampled_smiles.json",
- ) -> None:
- super().__init__()
- self._metrics = pd.DataFrame()
- self._sampled_smiles = pd.DataFrame()
- self._metrics_output = output_scores
- self._smiles_output = output_sampled_smiles
- def __repr__(self):
- return self.callback_name
- def set_output_files(self, output_score_data: str, output_sampled_smiles: str) -> None:
- self._metrics_output = output_score_data
- self._smiles_output = output_sampled_smiles
- def on_test_batch_end(
- self,
- trainer: pl.Trainer,
- model: _AbsTransformerModel,
- test_output: Dict[str, Any],
- batch: Dict[str, Any],
- batch_idx: int,
- dataloader_idx: int,
- ) -> None:
- smiles_keys = [
- "sampled_molecules",
- "sampled_molecules(unique)",
- "target_smiles",
- ]
- logged_metrics = {key: [val] for key, val in test_output.items() if key not in smiles_keys}
- for key, val in logged_metrics.items():
- if isinstance(val[0], torch.Tensor):
- logged_metrics[key] = [val[0].to(torch.device("cpu")).numpy()]
- sampled_smiles = {key: [val] for key, val in test_output.items() if key in smiles_keys}
- metrics_df = pd.DataFrame(logged_metrics)
- sampled_smiles_df = pd.DataFrame(sampled_smiles)
- self._metrics = pd.concat([self._metrics, metrics_df], axis=0, ignore_index=True)
- self._sampled_smiles = pd.concat([self._sampled_smiles, sampled_smiles_df], axis=0, ignore_index=True)
- self._save_logged_data()
- def _save_logged_data(self) -> None:
- """
- Retrieve and write data (model validation) logged during training.
- """
- self._metrics.to_csv(self._metrics_output, sep="\t", index=False)
- print("Test set metrics written to file: " + self._metrics_output)
- self._sampled_smiles.to_json(self._smiles_output, orient="table")
- print("Test set sampled smiles written to file: " + self._smiles_output)
- return
|