Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

callbacks.py 8.3 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  1. from __future__ import annotations
  2. import os
  3. from typing import Any, Dict, Optional
  4. from typing import TYPE_CHECKING
  5. import pandas as pd
  6. import pytorch_lightning as pl
  7. import pytorch_lightning.callbacks as plc
  8. import torch
  9. from pytorch_lightning.callbacks import Callback
  10. if TYPE_CHECKING:
  11. from molbart.models import _AbsTransformerModel
  12. class LearningRateMonitor(plc.LearningRateMonitor):
  13. callback_name = "LearningRateMonitor"
  14. def __init__(self, logging_interval: str = "step", log_momentum: bool = False, **kwargs: Any) -> None:
  15. super().__init__(logging_interval=logging_interval, log_momentum=log_momentum, **kwargs)
  16. def __repr__(self):
  17. return self.callback_name
  18. class ModelCheckpoint(plc.ModelCheckpoint):
  19. callback_name = "ModelCheckpoint"
  20. def __init__(
  21. self,
  22. dirpath: Optional[str] = None,
  23. filename: Optional[str] = None,
  24. monitor: str = "validation_loss",
  25. verbose: bool = False,
  26. save_last: bool = True,
  27. save_top_k: int = 3,
  28. save_weights_only: bool = False,
  29. mode: str = "auto",
  30. period: int = 1,
  31. prefix: str = "",
  32. **kwargs: Any,
  33. ) -> None:
  34. super().__init__(
  35. dirpath=dirpath,
  36. filename=filename,
  37. monitor=monitor,
  38. verbose=verbose,
  39. save_last=save_last,
  40. save_top_k=save_top_k,
  41. save_weights_only=save_weights_only,
  42. mode=mode,
  43. period=period,
  44. prefix=prefix,
  45. **kwargs,
  46. )
  47. def __repr__(self):
  48. return self.callback_name
  49. class StepCheckpoint(Callback):
  50. callback_name = "StepCheckpoint"
  51. def __init__(self, step_interval: int = 50000) -> None:
  52. super().__init__()
  53. if not isinstance(step_interval, int):
  54. raise TypeError(f"step_interval must be of type int, got type {type(step_interval)}")
  55. self.step_interval = step_interval
  56. def __repr__(self):
  57. return self.callback_name
  58. # def on_batch_end(self, trainer, model):
  59. # Ideally this should on_after_optimizer_step, but that isn't available in pytorch lightning (yet?)
  60. def on_after_backward(self, trainer: pl.Trainer, model: _AbsTransformerModel) -> None:
  61. step = trainer.global_step
  62. if (step != 0) and (step % self.step_interval == 0):
  63. # if (step % self.step_interval == 0):
  64. self._save_model(trainer, model, step)
  65. def _save_model(self, trainer: pl.Trainer, model: _AbsTransformerModel, step: int) -> None:
  66. if trainer.logger is not None:
  67. if trainer.weights_save_path != trainer.default_root_dir:
  68. save_dir = trainer.weights_save_path
  69. else:
  70. save_dir = trainer.logger.save_dir or trainer.default_root_dir
  71. version = (
  72. trainer.logger.version
  73. if isinstance(trainer.logger.version, str)
  74. else f"version_{trainer.logger.version}"
  75. )
  76. version, name = trainer.training_type_plugin.broadcast((version, trainer.logger.name))
  77. ckpt_path = os.path.join(save_dir, str(name), version, "checkpoints")
  78. else:
  79. ckpt_path = os.path.join(trainer.weights_save_path, "checkpoints")
  80. save_path = f"{ckpt_path}/step={str(step)}.ckpt"
  81. print(f"Saving step checkpoint in {save_path}")
  82. trainer.save_checkpoint(save_path)
  83. class OptLRMonitor(Callback):
  84. callback_name = "OptLRMonitor"
  85. def __init__(self) -> None:
  86. super().__init__()
  87. def __repr__(self):
  88. return self.callback_name
  89. def on_train_batch_start(self, trainer: pl.Trainer, *args: Any, **kwargs: Any) -> None:
  90. # Only support one optimizer
  91. opt = trainer.optimizers[0]
  92. # Only support one param group
  93. stats = {"lr-Adam": opt.param_groups[0]["lr"]}
  94. trainer.logger.log_metrics(stats, step=trainer.global_step)
  95. class ValidationScoreCallback(Callback):
  96. """
  97. Retrieving scores from the validation epochs and write to file continuously.
  98. """
  99. callback_name = "ValidationScoreCallback"
  100. def __init__(self) -> None:
  101. super().__init__()
  102. self._metrics = pd.DataFrame()
  103. self._skip_logging = True
  104. def __repr__(self):
  105. return self.callback_name
  106. def on_validation_epoch_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule) -> None:
  107. if self._skip_logging:
  108. self._skip_logging = False
  109. return
  110. logged_metrics = {
  111. key: [val.to(torch.device("cpu")).numpy()]
  112. for key, val in trainer.callback_metrics.items()
  113. if key != "mol_acc"
  114. }
  115. metrics = {"epoch": pl_module.current_epoch}
  116. metrics.update(logged_metrics)
  117. metrics_df = pd.DataFrame(metrics)
  118. self._metrics = pd.concat([self._metrics, metrics_df], axis=0, ignore_index=True)
  119. self.out_directory = self._get_out_directory(trainer)
  120. self._save_logged_data()
  121. return
  122. def _get_out_directory(self, trainer: pl.Trainer) -> str:
  123. if trainer.logger is not None:
  124. if trainer.weights_save_path != trainer.default_root_dir:
  125. save_dir = trainer.weights_save_path
  126. else:
  127. save_dir = trainer.logger.save_dir or trainer.default_root_dir
  128. version = (
  129. trainer.logger.version
  130. if isinstance(trainer.logger.version, str)
  131. else f"version_{trainer.logger.version}"
  132. )
  133. version, name = trainer.training_type_plugin.broadcast((version, trainer.logger.name))
  134. data_path = os.path.join(save_dir, str(name), version)
  135. else:
  136. data_path = trainer.weights_save_path
  137. return data_path
  138. def _save_logged_data(self) -> None:
  139. """
  140. Retrieve and write data (model validation) logged during training.
  141. """
  142. outfile = self.out_directory + "/logged_train_metrics.csv"
  143. self._metrics.to_csv(outfile, sep="\t", index=False)
  144. print("Logged training/validation set loss written to: " + outfile)
  145. return
  146. class ScoreCallback(Callback):
  147. """
  148. Retrieving scores from test step and write to file continuously.
  149. """
  150. callback_name = "ScoreCallback"
  151. def __init__(
  152. self,
  153. output_scores: str = "metrics_scores.csv",
  154. output_sampled_smiles: str = "sampled_smiles.json",
  155. ) -> None:
  156. super().__init__()
  157. self._metrics = pd.DataFrame()
  158. self._sampled_smiles = pd.DataFrame()
  159. self._metrics_output = output_scores
  160. self._smiles_output = output_sampled_smiles
  161. def __repr__(self):
  162. return self.callback_name
  163. def set_output_files(self, output_score_data: str, output_sampled_smiles: str) -> None:
  164. self._metrics_output = output_score_data
  165. self._smiles_output = output_sampled_smiles
  166. def on_test_batch_end(
  167. self,
  168. trainer: pl.Trainer,
  169. model: _AbsTransformerModel,
  170. test_output: Dict[str, Any],
  171. batch: Dict[str, Any],
  172. batch_idx: int,
  173. dataloader_idx: int,
  174. ) -> None:
  175. smiles_keys = [
  176. "sampled_molecules",
  177. "sampled_molecules(unique)",
  178. "target_smiles",
  179. ]
  180. logged_metrics = {key: [val] for key, val in test_output.items() if key not in smiles_keys}
  181. for key, val in logged_metrics.items():
  182. if isinstance(val[0], torch.Tensor):
  183. logged_metrics[key] = [val[0].to(torch.device("cpu")).numpy()]
  184. sampled_smiles = {key: [val] for key, val in test_output.items() if key in smiles_keys}
  185. metrics_df = pd.DataFrame(logged_metrics)
  186. sampled_smiles_df = pd.DataFrame(sampled_smiles)
  187. self._metrics = pd.concat([self._metrics, metrics_df], axis=0, ignore_index=True)
  188. self._sampled_smiles = pd.concat([self._sampled_smiles, sampled_smiles_df], axis=0, ignore_index=True)
  189. self._save_logged_data()
  190. def _save_logged_data(self) -> None:
  191. """
  192. Retrieve and write data (model validation) logged during training.
  193. """
  194. self._metrics.to_csv(self._metrics_output, sep="\t", index=False)
  195. print("Test set metrics written to file: " + self._metrics_output)
  196. self._sampled_smiles.to_json(self._smiles_output, orient="table")
  197. print("Test set sampled smiles written to file: " + self._smiles_output)
  198. return
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...