Register
Login
Resources
Docs Blog Datasets Glossary Case Studies Tutorials & Webinars
Product
Data Engine LLMs Platform Enterprise
Pricing Explore
Connect to our Discord channel

tokeniser_test.py 7.8 KB

You have to be logged in to leave a comment. Sign In
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
  1. import torch
  2. import pytest
  3. import random
  4. from molbart.tokeniser import MolEncTokeniser
  5. regex = "\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9]"
  6. # Use dummy SMILES strings
  7. smiles_data = [
  8. "CCO.Ccc",
  9. "CCClCCl",
  10. "C(=O)CBr"
  11. ]
  12. example_tokens = [
  13. ["^", "C", "(", "=", "O", ")", "unknown", "&"],
  14. ["^", "C", "C", "<SEP>", "C", "Br", "&"]
  15. ]
  16. random.seed(a=1)
  17. torch.manual_seed(1)
  18. def test_create_vocab():
  19. tokeniser = MolEncTokeniser.from_smiles(smiles_data, regex)
  20. expected = {
  21. "<PAD>": 0,
  22. "?": 1,
  23. "^": 2,
  24. "&": 3,
  25. "<MASK>": 4,
  26. "<SEP>": 5,
  27. "C": 6,
  28. "O": 7,
  29. ".": 8,
  30. "c": 9,
  31. "Cl": 10,
  32. "(": 11,
  33. "=": 12,
  34. ")": 13,
  35. "Br": 14
  36. }
  37. vocab = tokeniser.vocab
  38. assert expected == vocab
  39. def test_pad_seqs_padding():
  40. seqs = [[1,2], [2,3,4,5], []]
  41. padded, _ = MolEncTokeniser._pad_seqs(seqs, " ")
  42. expected = [[1,2, " ", " "], [2,3,4,5], [" ", " ", " ", " "]]
  43. assert padded == expected
  44. def test_pad_seqs_mask():
  45. seqs = [[1,2], [2,3,4,5], []]
  46. _, mask = MolEncTokeniser._pad_seqs(seqs, " ")
  47. expected_mask = [[0, 0, 1, 1], [0, 0, 0, 0], [1, 1, 1, 1]]
  48. assert expected_mask == mask
  49. def test_mask_tokens_empty_mask():
  50. tokeniser = MolEncTokeniser.from_smiles(smiles_data, regex)
  51. masked, token_mask = tokeniser._mask_tokens(example_tokens, empty_mask=True)
  52. expected_sum = 0
  53. mask_sum = sum([sum(m) for m in token_mask])
  54. assert masked == example_tokens
  55. assert expected_sum == mask_sum
  56. # Run tests which require random masking first so we get deterministic masking
  57. @pytest.mark.order(1)
  58. def test_mask_tokens_replace():
  59. tokeniser = MolEncTokeniser.from_smiles(smiles_data, regex, mask_prob=0.4, mask_scheme="replace")
  60. masked, token_mask = tokeniser._mask_tokens(example_tokens)
  61. expected_masks = [
  62. [True, False, False, True, False, False, False, False],
  63. [False, False, False, True, False, False, True]
  64. ]
  65. assert expected_masks == token_mask
  66. @pytest.mark.order(3)
  67. def test_mask_tokens_span():
  68. tokeniser = MolEncTokeniser.from_smiles(smiles_data, regex, mask_prob=0.4)
  69. masked, token_mask = tokeniser._mask_tokens(example_tokens)
  70. expected_masks = [
  71. [False, False, False, True, True, False, False, False],
  72. [False, False, True, False, False, False]
  73. ]
  74. assert expected_masks == token_mask
  75. def test_convert_tokens_to_ids():
  76. tokeniser = MolEncTokeniser.from_smiles(smiles_data[2:3], regex)
  77. ids = tokeniser.convert_tokens_to_ids(example_tokens)
  78. expected_ids = [[2, 6, 7, 8, 9, 10, 1, 3], [2, 6, 6, 5, 6, 11, 3]]
  79. assert expected_ids == ids
  80. def test_tokenise_one_sentence():
  81. tokeniser = MolEncTokeniser.from_smiles(smiles_data, regex)
  82. tokens = tokeniser.tokenise(smiles_data)
  83. expected = [
  84. ["^", "C", "C", "O", ".", "C", "c", "c", "&"],
  85. ["^", "C", "C", "Cl", "C", "Cl", "&"],
  86. ["^", "C", "(", "=", "O", ")", "C", "Br", "&"]
  87. ]
  88. assert expected == tokens["original_tokens"]
  89. def test_tokenise_two_sentences():
  90. tokeniser = MolEncTokeniser.from_smiles(smiles_data, regex)
  91. tokens = tokeniser.tokenise(smiles_data, sents2=smiles_data)
  92. expected = [
  93. ["^", "C", "C", "O", ".", "C", "c", "c", "<SEP>", "C", "C", "O", ".", "C", "c", "c", "&"],
  94. ["^", "C", "C", "Cl", "C", "Cl", "<SEP>", "C", "C", "Cl", "C", "Cl", "&"],
  95. ["^", "C", "(", "=", "O", ")", "C", "Br", "<SEP>", "C", "(", "=", "O", ")", "C", "Br", "&"]
  96. ]
  97. expected_sent_masks = [
  98. ([0] * 9) + ([1] * 8),
  99. ([0] * 7) + ([1] * 6),
  100. ([0] * 9) + ([1] * 8),
  101. ]
  102. assert expected == tokens["original_tokens"]
  103. assert expected_sent_masks == tokens["sentence_masks"]
  104. @pytest.mark.order(2)
  105. def test_tokenise_mask_replace():
  106. tokeniser = MolEncTokeniser.from_smiles(smiles_data, regex, mask_prob=0.4, mask_scheme="replace")
  107. tokens = tokeniser.tokenise(smiles_data, sents2=smiles_data, mask=True)
  108. expected_m_tokens = [
  109. ["^", "<MASK>", "<MASK>", "O", ".", "<MASK>", "<MASK>", "c", "<SEP>", "C", "<MASK>", "O", ".", "C", "c", "c", "&"],
  110. ["^", "<MASK>", "<MASK>", "<MASK>", "C", "<MASK>", "<SEP>", "<MASK>", "C", "Cl", "<MASK>", "Cl", "&"],
  111. ["^", "<MASK>", "(", "=", "<MASK>", "<MASK>", "C", "Br", "<SEP>", "<MASK>", "(", "=", "O", ")", "<MASK>", "Br", "&"]
  112. ]
  113. expected_tokens = [
  114. ["^", "C", "C", "O", ".", "C", "c", "c", "<SEP>", "C", "C", "O", ".", "C", "c", "c", "&"],
  115. ["^", "C", "C", "Cl", "C", "Cl", "<SEP>", "C", "C", "Cl", "C", "Cl", "&"],
  116. ["^", "C", "(", "=", "O", ")", "C", "Br", "<SEP>", "C", "(", "=", "O", ")", "C", "Br", "&"]
  117. ]
  118. assert expected_m_tokens == tokens["masked_tokens"]
  119. assert expected_tokens == tokens["original_tokens"]
  120. @pytest.mark.order(4)
  121. def test_tokenise_mask_span():
  122. tokeniser = MolEncTokeniser.from_smiles(smiles_data, regex, mask_prob=0.4)
  123. tokens = tokeniser.tokenise(smiles_data, sents2=smiles_data, mask=True)
  124. expected_m_tokens = [
  125. ["^", "<MASK>", "C", "c", "c", "<SEP>", "<MASK>", "C", "<MASK>", "&"],
  126. ["^", "C", "C", "Cl", "C", "Cl", "<SEP>", "<MASK>", "Cl", "C", "Cl", "&"],
  127. ["^", "<MASK>", "=", "<MASK>", "C", "<MASK>", "<SEP>", "C", "<MASK>", "=", "O", "<MASK>", "&"]
  128. ]
  129. expected_tokens = [
  130. ["^", "C", "C", "O", ".", "C", "c", "c", "<SEP>", "C", "C", "O", ".", "C", "c", "c", "&"],
  131. ["^", "C", "C", "Cl", "C", "Cl", "<SEP>", "C", "C", "Cl", "C", "Cl", "&"],
  132. ["^", "C", "(", "=", "O", ")", "C", "Br", "<SEP>", "C", "(", "=", "O", ")", "C", "Br", "&"]
  133. ]
  134. assert expected_m_tokens == tokens["masked_tokens"]
  135. assert expected_tokens == tokens["original_tokens"]
  136. assert len(tokens["masked_tokens"]) == len(tokens["token_masks"])
  137. for ts, tms in zip(tokens["masked_tokens"], tokens["token_masks"]):
  138. assert len(ts) == len(tms)
  139. @pytest.mark.order(5)
  140. def test_tokenise_mask_span_pad():
  141. tokeniser = MolEncTokeniser.from_smiles(smiles_data, regex, mask_prob=0.4)
  142. tokens = tokeniser.tokenise(smiles_data, mask=True, pad=True)
  143. expected_m_tokens = [
  144. ["^", "C", "<MASK>", "<MASK>", "&"],
  145. ["^", "C", "<MASK>", "&", "<PAD>"],
  146. ["^", "<MASK>", "<MASK>", "<MASK>", "&"]
  147. ]
  148. expected_tokens = [
  149. ["^", "C", "C", "O", ".", "C", "c", "c", "&"],
  150. ["^", "C", "C", "Cl", "C", "Cl", "&", "<PAD>", "<PAD>"],
  151. ["^", "C", "(", "=", "O", ")", "C", "Br", "&"]
  152. ]
  153. assert expected_m_tokens == tokens["masked_tokens"]
  154. assert expected_tokens == tokens["original_tokens"]
  155. assert len(tokens["masked_tokens"]) == len(tokens["token_masks"])
  156. assert len(tokens["masked_tokens"]) == len(tokens["masked_pad_masks"])
  157. for ts, tms in zip(tokens["masked_tokens"], tokens["token_masks"]):
  158. assert len(ts) == len(tms)
  159. for ts, pms in zip(tokens["masked_tokens"], tokens["masked_pad_masks"]):
  160. assert len(ts) == len(pms)
  161. def test_tokenise_padding():
  162. tokeniser = MolEncTokeniser.from_smiles(smiles_data, regex)
  163. output = tokeniser.tokenise(smiles_data, sents2=smiles_data, pad=True)
  164. expected_tokens = [
  165. ["^", "C", "C", "O", ".", "C", "c", "c", "<SEP>", "C", "C", "O", ".", "C", "c", "c", "&"],
  166. ["^", "C", "C", "Cl", "C", "Cl", "<SEP>", "C", "C", "Cl", "C", "Cl", "&", "<PAD>", "<PAD>", "<PAD>", "<PAD>"],
  167. ["^", "C", "(", "=", "O", ")", "C", "Br", "<SEP>", "C", "(", "=", "O", ")", "C", "Br", "&"]
  168. ]
  169. expected_pad_masks = [
  170. [0] * 17,
  171. ([0] * 13) + ([1] * 4),
  172. [0] * 17
  173. ]
  174. expected_sent_masks = [
  175. ([0] * 9) + ([1] * 8),
  176. ([0] * 7) + ([1] * 6) + ([0] * 4),
  177. ([0] * 9) + ([1] * 8),
  178. ]
  179. assert expected_tokens == output["original_tokens"]
  180. assert expected_pad_masks == output["original_pad_masks"]
  181. assert expected_sent_masks == output["sentence_masks"]
Tip!

Press p or to see the previous file or, n or to see the next file

Comments

Loading...